Limit theorems for point processes generated in a general branching process

1981 ◽  
Vol 13 (04) ◽  
pp. 650-668 ◽  
Author(s):  
Martin Härnqvist

With the general convergence theory for branching processes as basis a special problem is studied. An extra point process of events during life is assigned to each realised individual, and the behaviour of the superposition of such point processes in action is studied as the population grows. With the proper scaling and under some regularity conditions the superposition is shown to converge in distribution to a Poisson process. Another scaling gives rise to a mixed Poisson process as limit. Established weak convergence techniques for point processes are applied, together with some recent strong convergence results for branching processes.

1981 ◽  
Vol 13 (4) ◽  
pp. 650-668 ◽  
Author(s):  
Martin Härnqvist

With the general convergence theory for branching processes as basis a special problem is studied. An extra point process of events during life is assigned to each realised individual, and the behaviour of the superposition of such point processes in action is studied as the population grows. With the proper scaling and under some regularity conditions the superposition is shown to converge in distribution to a Poisson process. Another scaling gives rise to a mixed Poisson process as limit.Established weak convergence techniques for point processes are applied, together with some recent strong convergence results for branching processes.


1971 ◽  
Vol 3 (01) ◽  
pp. 78-119 ◽  
Author(s):  
Marcel F. Neuts

Many service systems exhibit variations of a random nature in the intensity of the arrival process or of the speed of service or of both. Changes in work shifts, rush hours, interruptions in the arrival process, server breakdowns, etc. all fall into this category. The present study deals with a generalization of the classical M/G/1 queue by considering an extraneous process of phases which can be in one of the states {1, …, m}. During any interval spent in phase i, the arrivals are according to a homogeneous Poisson process of rate λ i and any service initiated during such an interval has a duration distributed according to H i (·). The process of phases is assumed to be an irreducible Markov chain in continuous time and is fully characterized by its initial conditions, by an irreducible stochastic matrix P and by the mean sojourn times σ1 -1, …, σ m -1 in each phase. Independently of the queueing aspects, this arrival process is a generalization of the classical Poisson process which can be of interest in modelling simple point processes with randomly fluctuating “arrival” rate. Two approaches to the time dependent study of this queue are presented; one generalizes the imbedded semi-Markov process obtained by considering the queue immediately following departure points; the other approach exploits the relationship between this queue and branching processes. The latter is more elegant from a purely theoretical viewpoint and involves iterates of a general type of matrix function introduced by the author. By making extensive use of the Perron-Frobenius theory of positive matrices the equilibrium condition of the queue is obtained. While retaining a similar intuitive interpretation the equilibrium condition is substantially more complicated than for the M/G/1 model. The recurrence relations which yield the joint distribution of the phase state at time t, the queue length, the total number served and the virtual waiting time at t are exhibited in detail. Via transform techniques a number of limiting and marginal distributions are discussed. The discussion relies heavily on the theory of Markov renewal processes. Throughout the paper and in a final section the author advocates the use of the structural properties of the queue and the resulting recurrence relations to organize the numerical analysis of complex queueing models such as the present one. More explicit results for the case of two phases are given and are compared to results obtained by Yechiali and Naor for a closely related two-phase generalization of the M/M/1 queue.


1971 ◽  
Vol 3 (1) ◽  
pp. 78-119 ◽  
Author(s):  
Marcel F. Neuts

Many service systems exhibit variations of a random nature in the intensity of the arrival process or of the speed of service or of both. Changes in work shifts, rush hours, interruptions in the arrival process, server breakdowns, etc. all fall into this category.The present study deals with a generalization of the classical M/G/1 queue by considering an extraneous process of phases which can be in one of the states {1, …, m}. During any interval spent in phase i, the arrivals are according to a homogeneous Poisson process of rate λi and any service initiated during such an interval has a duration distributed according to Hi(·). The process of phases is assumed to be an irreducible Markov chain in continuous time and is fully characterized by its initial conditions, by an irreducible stochastic matrix P and by the mean sojourn times σ1-1, …, σm-1 in each phase.Independently of the queueing aspects, this arrival process is a generalization of the classical Poisson process which can be of interest in modelling simple point processes with randomly fluctuating “arrival” rate.Two approaches to the time dependent study of this queue are presented; one generalizes the imbedded semi-Markov process obtained by considering the queue immediately following departure points; the other approach exploits the relationship between this queue and branching processes. The latter is more elegant from a purely theoretical viewpoint and involves iterates of a general type of matrix function introduced by the author. By making extensive use of the Perron-Frobenius theory of positive matrices the equilibrium condition of the queue is obtained. While retaining a similar intuitive interpretation the equilibrium condition is substantially more complicated than for the M/G/1 model.The recurrence relations which yield the joint distribution of the phase state at time t, the queue length, the total number served and the virtual waiting time at t are exhibited in detail. Via transform techniques a number of limiting and marginal distributions are discussed. The discussion relies heavily on the theory of Markov renewal processes.Throughout the paper and in a final section the author advocates the use of the structural properties of the queue and the resulting recurrence relations to organize the numerical analysis of complex queueing models such as the present one.More explicit results for the case of two phases are given and are compared to results obtained by Yechiali and Naor for a closely related two-phase generalization of the M/M/1 queue.


1979 ◽  
Vol 16 (4) ◽  
pp. 881-889 ◽  
Author(s):  
Hans Dieter Unkelbach

A road traffic model with restricted passing, formulated by Newell (1966), is described by conditional cluster point processes and analytically handled by generating functionals of point processes.The traffic distributions in either space or time are in equilibrium, if the fast cars form a Poisson process with constant intensity combined with Poisson-distributed queues behind the slow cars (Brill (1971)). It is shown that this state of equilibrium is stable, which means that this state will be reached asymptotically for general initial traffic distributions. Furthermore the queues behind the slow cars dissolve asymptotically like independent Poisson processes with diminishing rate, also independent of the process of non-queuing cars. To get these results limit theorems for conditional cluster point processes are formulated.


1975 ◽  
Vol 7 (1) ◽  
pp. 83-122 ◽  
Author(s):  
Odile Macchi

The structure of the probability space associated with a general point process, when regarded as a counting process, is reviewed using the coincidence formalism. The rest of the paper is devoted to the class of regular point processes for which all coincidence probabilities admit densities. It is shown that their distribution is completely specified by the system of coincidence densities. The specification formalism is stressed for ‘completely’ regular point processes. A construction theorem gives a characterization of the system of coincidence densities of such a process. It permits the study of most models of point processes. New results on the photon process, a particular type of conditioned Poisson process, are derived. New examples are exhibited, including the Gauss-Poisson process and the ‘fermion’ process that is suitable whenever the points are repulsive.


1984 ◽  
Vol 16 (02) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random setsX, densitiesDφ(X) of additive functionalsφare defined and formulas forare derived whenKis a compact convex set in. In particular, for the quermassintegrals and motioninvariantX, these formulas are in analogy with classical integral geometric formulas. The case whereXis the union set of a Poisson processYof convex particles is considered separately. Here, formulas involving the intensity measure ofYare obtained.


1985 ◽  
Vol 22 (03) ◽  
pp. 503-517
Author(s):  
Helmut Pruscha

The present paper deals with continuous-time Markov branching processes allowing immigration. The immigration rate is allowed to be random and time-dependent where randomness may stem from an external source or from state-dependence. Unlike the traditional approach, we base the analysis of these processes on the theory of multivariate point processes. Using the tools of this theory, asymptotic results on parametric inference are derived for the subcritical case. In particular, the limit distributions of some parametric estimators and of Pearson-type statistics for testing simple and composite hypotheses are established.


1984 ◽  
Vol 16 (2) ◽  
pp. 324-346 ◽  
Author(s):  
Wolfgang Weil ◽  
John A. Wieacker

For certain stationary random sets X, densities Dφ (X) of additive functionals φ are defined and formulas for are derived when K is a compact convex set in . In particular, for the quermassintegrals and motioninvariant X, these formulas are in analogy with classical integral geometric formulas. The case where X is the union set of a Poisson process Y of convex particles is considered separately. Here, formulas involving the intensity measure of Y are obtained.


1981 ◽  
Vol 13 (3) ◽  
pp. 464-497 ◽  
Author(s):  
David Tanny

This paper is concerned with the growth of multitype branching processes in a random environment (mbpre). It is shown that, under suitable regularity conditions, the process either explodes of becomes extinct. A classification theorem is given delineating the cases of explosion or extinction. Furthermore, it is shown that the process grows at an exponential rate on its set of non-extinction provided the process is stable. Criteria is given for non-certain extinction of the mbpre to occur, and an example shows that the stability condition cannot be removed. The method of proof used, in general, is direct probabilistic computation rather than the classical functional iteration techniques. Growth theorems are first proved for increasing mbpre and subsequently transferred to general mbpre using the associated mbpre and the reduced mbpre.


1984 ◽  
Vol 21 (04) ◽  
pp. 710-719
Author(s):  
Richard F. Serfozo

The Poisson process is regarded as a point process of rare events because of the classical result that the number of successes in a sequence of Bernoulli trials is asymptotically Poisson as the probability of a success tends to 0. It is shown that this rareness property of the Poisson process is characteristic of any infinitely divisible point process or random measure with independent increments. These processes and measures arise as limits of certain rarefactions of compound point processes: purely atomic random measures with uniformly null atom sizes. Examples include thinnings and partitions of point processes.


Sign in / Sign up

Export Citation Format

Share Document