The linearised theory of conical fields in supersonic flow, with applications to plane aerofoils

1950 ◽  
Vol 2 (1) ◽  
pp. 39-84 ◽  
Author(s):  
S. Goldstein ◽  
G. N. Ward

SummaryIn many important problems of supersonic flow, either for the whole field of flow or a part of it, the velocity components are constant on straight lines through a fixed point. Such velocity fields are called conical fields. In the usual theory of the linearised perturbations of a steady supersonic flow, the velocity is assumed to differ only slightly from a uniform undisturbed velocity, and in the defining equations and boundary conditions all non-linear terms in the components of the perturbation velocity (and their space derivatives) are neglected. In this paper the equations of linearised supersonic conical fields, and their general solution, are set out both for the region inside and for the region outside the Mach cone of the origin in the conical field. The results are applied to flow past plane triangular aerofoils with straight edges downstream of the vertex (of which there are six cases), to flow past those plane aerofoils of more extended shape and finite span for which the solution may be obtained by combining a finite number of conical fields, and to the problem of plane triangular vanes in semi-infinite free jets. In the applications, the velocity fields are determined in considerable detail, but a main purpose in setting them out was to exhibit the mathematical methods used and the physical considerations that enter in determining the mathematical solutions.

2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


1950 ◽  
Vol 1 (4) ◽  
pp. 305-318
Author(s):  
G. N. Ward

SummaryThe approximate supersonic flow past a slender ducted body of revolution having an annular intake is determined by using the Heaviside operational calculus applied to the linearised equation for the velocity potential. It is assumed that the external and internal flows are independent. The pressures on the body are integrated to find the drag, lift and moment coefficients of the external forces. The lift and moment coefficients have the same values as for a slender body of revolution without an intake, but the formula for the drag has extra terms given in equations (32) and (56). Under extra assumptions, the lift force due to the internal pressures is estimated. The results are applicable to propulsive ducts working under the specified condition of no “ spill-over “ at the intake.


A theory is developed of the supersonic flow past a body of revolution at large distances from the axis, where a linearized approximation is valueless owing to the divergence of the characteristics at infinity. It is used to find the asymptotic forms of the equations of the shocks which are formed from the neighbourhoods of the nose and tail. In the special case of a slender pointed body, the general theory at large distances is used to modify the linearized approximation to give a theory which is uniformly valid at all distances from the axis. The results which are of physical importance are summarized in the conclusion (§ 9) and compared with the results of experimental observations.


2013 ◽  
Vol 71 (3) ◽  
pp. 583-600 ◽  
Author(s):  
Myoungjean Bae ◽  
Gui-Qiang Chen ◽  
Mikhail Feldman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document