free jets
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 24)

H-INDEX

37
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Nek Sharan ◽  
Josette R. Bellan
Keyword(s):  

2021 ◽  
Author(s):  
Damon Dehnadfar

In abrasive jet micromachining (AJM), a jet of particles is passed through narrow mask openings in order to define the features to be micro-machined. The size and shape of the micro-machined features depends on the distribution of the particle velocity and mass flux through the mask openings. In this work, a high speed laser shadowgraphy technique was used to demonstrate experimentally, for the first time, the significant effect of the mask opening size and powder shape and size on the resulting distribution of particle mass flux and velocity through the mask opening. In particular, it was found that the velocity through the mask was approximately constant, but different in magnitude than the velocity in the free jet incident to the mask. The measured mass flux distributions were in excellent agreement with a previously developed analytical model, thus directly confirming its validity. Additional measurements also showed that an existing numerical model could be used to predict the velocity distribution in free jets of spherical particles, and, if a modification to the particle drag coefficient is made, in free jets of angular particles. The direct experimental verification of these models allow for their use in surface evolution models that can predict the evolving shape of features micro-machined using AJM.


2021 ◽  
Author(s):  
Damon Dehnadfar

In abrasive jet micromachining (AJM), a jet of particles is passed through narrow mask openings in order to define the features to be micro-machined. The size and shape of the micro-machined features depends on the distribution of the particle velocity and mass flux through the mask openings. In this work, a high speed laser shadowgraphy technique was used to demonstrate experimentally, for the first time, the significant effect of the mask opening size and powder shape and size on the resulting distribution of particle mass flux and velocity through the mask opening. In particular, it was found that the velocity through the mask was approximately constant, but different in magnitude than the velocity in the free jet incident to the mask. The measured mass flux distributions were in excellent agreement with a previously developed analytical model, thus directly confirming its validity. Additional measurements also showed that an existing numerical model could be used to predict the velocity distribution in free jets of spherical particles, and, if a modification to the particle drag coefficient is made, in free jets of angular particles. The direct experimental verification of these models allow for their use in surface evolution models that can predict the evolving shape of features micro-machined using AJM.


2021 ◽  
Vol 33 (5) ◽  
pp. 051707
Author(s):  
Arun Kumar Perumal ◽  
Ethirajan Rathakrishnan

Author(s):  
Mingli He ◽  
Guang Zhang ◽  
Shaohua Hu ◽  
Cheng Wang

Abstract The effects of nozzle structures and working pressure on the dynamic characteristics of supersonic turbulent free jets have been investigated numerically. Four types of nozzles (namely Laval, pipe, contraction I, and contraction II, respectively) and four pressure conditions (namely K = 0.8, 1, 1.5, and 2, respectively) were considered. A Standard k-ε model was utilized for the calculation of the supersonic turbulent free jets. Validation of the model was performed on the Laval jet by comparing it with the experiment and large-eddy simulation (LES). A perfect agreement was achieved in terms of the centerline and radial axial velocity profiles. The jets issuing from the Laval and the pipe had a longer potential core and a larger centerline axial velocity with the same outlet momentum. The length of the potential core was proportional to the working pressure, but variations of the centerline axial velocity decay rate were inverse for all nozzles. The effects of nozzle structures and work pressure on the spreading rates of the jets were insignificant. No obvious change trend could be observed on the kinematic and geometric virtual origins. The study can provide references for the nozzle and working pressure selection in practical application.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Alexandros C. Chasoglou ◽  
Panagiotis Tsirikoglou ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari

Abstract This study describes the design, development, and testing of a miniature fast response aerodynamic probe (FRAP) with four sensors (4S), which are able to perform measurements in the unsteady three-dimensional flow field. Moreover, the calibration and first results with the newly developed probe are provided. The miniature FRAP-4S demonstrates a 3 mm tip diameter, offering a 25% reduction in diameter size, in comparison to a first-generation FRAP-4S, without any loss in terms of measurement bandwidth. The 3 mm outer casing of the probe is additively manufactured with a high-precision binder jetting technique. In terms of aerodynamic performance, the probe demonstrates high angular sensitivity up to ± 18 deg incidence angle in both directions. To evaluate the measurement accuracy of the newly developed FRAP-4S, measurements are performed at the Laboratory for Energy Conversion (LEC) in both a round axisymmetric jet and an one-and-a-half stage, unshrouded and highly loaded axial turbine configuration. Turbulence measurements performed with the miniature FRAP-4S are compared against hot-wire studies in round free-jets found in the literature. Good agreement in both trends but also absolute values is demonstrated. Moreover, the performance of the probe is compared against traditional instrumentation developed at LEC, namely, miniature pneumatic and FRAP-2S probes. The results indicate that the FRAP-4S, despite its larger size in comparison to the other probes tested, can resolve the main flow patterns, with the highest deviations occuring in the presence of highly skewed and sheared flow. Furthermore, the additively manufactured probe was proven to be robust after more than 50 hours of testing in the representative turbine environment configuration. Finally, it should be highlighted that the newly developed FRAP reduces measurement time by a factor of three in comparison to FRAP-2S, which directly translates to reduced development time and thus cost during the turbomachinery development phase.


Author(s):  
Kentaro Echigo ◽  
Koichi Tsujimoto ◽  
Toshihiko Shakouchi ◽  
Toshitake Ando ◽  
Mamoru Takahashi
Keyword(s):  

Author(s):  
Alexandros Chasoglou ◽  
Panagiotis Tsirikoglou ◽  
Anestis Kalfas ◽  
Reza Abhari

Abstract The current work describes the design, development and testing of a miniature fast response aerodynamic probe (FRAP) with 4 sensors (4S), able to perform measurements in unsteady three-dimensional flow field. Moreover, the calibration and first results with the newly developed probe is also provided. The miniature FRAP-4S demonstrates a 3 mm tip diameter, which represents a 25% reduction in diameter size, in comparison to a first generation FRAP-4S, without any loss in terms of measurement bandwidth. The 3 mm outer casing of the probe is additively manufactured with a high-precision binder jetting technique. In terms of aerodynamic performance, the probe demonstrates high angular sensitivity up to at least ± 18° incidence angle in both directions. To evaluate the measurement accuracy of the newly developed FRAP-4S, measurements are performed at the Laboratory for Energy Conversion (LEC) in both a round axisymmetric jet and an one-and-a-half stage, unshrouded and highly-loaded axial turbine configuration. Turbulence measurements performed with the miniature FRAP-4S are compared against hot-wire studies in round free-jets found in the literature. Good agreement in both trends but also absolute values is demonstrated. Moreover, the performance of the probe is compared against traditional instrumentation developed at LEC, namely miniature pneumatic and FRAP-2S probes. The results indicate that the FRAP-4S, despite its larger size in comparison to the other probes tested, can resolve the main flow patterns, while the highest deviations occur in the presence of highly skewed and sheared flows. Furthermore, the additively manufactured probe was proven to be robust after more than 50 hours of testing in representative turbine environment configuration. Finally, it should be highlighted that the newly developed FRAP reduces measurement time by a factor of three in comparison to FRAP-2S, which directly translates to reduced development time and thus cost, during turbomachinery development phase.


Sign in / Sign up

Export Citation Format

Share Document