An Analysis of the Large Deflections of Beams using the Rayleigh-Ritz Finite Element Method

1968 ◽  
Vol 19 (4) ◽  
pp. 357-367 ◽  
Author(s):  
A. C. Walker ◽  
D. G. Hall

SummaryThe Rayleigh-Ritz finite element method is used to obtain an approximate solution of the exact non-linear energy functional describing the large deflection bending behaviour of a simply-supported inextensible uniform beam subjected to point loads. The solution of the non-linear algebraic equations resulting from the use of this method is effected, using three different techniques, and comparisons are made regarding the accuracy and computing effort involved in each. A description is given of an experimental investigation of the problem and comparison of the results with those of the numerical method, and of the available exact continuum analyses, indicates that the numerical method provides satisfactory predictions for the non-linear beam behaviour for deflections up to one quarter of the beam’s length.

Author(s):  
А.В. Рукавишников

На основе метода декомпозиции области построен стабилизационный неконформный метод конечных элементов для решения задачи типа Озеена. Для конвективно доминирующих течений с разрывным коэффициентом вязкости определена шкала оптимального выбора стабилизирующего параметра. Результаты численных экспериментов согласуются с теоретической оценкой сходимости. Purpose. To construct modified approximation approach using the finite element method and to perform numerical analysis for a two dimensional problem on the flow of a viscous inhomogeneous fluids — the Oseen type problem, that is obtained by sampling in time and linearizing the incompressible Navier—Stokes equations. To consider the convection dominated flow case. Methodology. Based on the domain decomposition method with a smooth curvilinear boundary between subdomains, a stabilization nonconformal finite element method is constructed that satisfies the inf-sup-stability condition. To solve the resulting system of linear algebraic equations, an iterative process is considered that uses the decomposition of the vector in the Krylov subspace with minimal inviscidity, with a block preconditioning of the matrix. Findings. The results of the numerical experiments demonstrate the robustness of the considered method for different (even small) discontinuous values of viscosity. The differences between finite element and exact solutions for the velocity field and pressure in the norms of the grid spaces decrease as


2013 ◽  
Vol 389 ◽  
pp. 267-272 ◽  
Author(s):  
Peng Shen ◽  
Yu Min He ◽  
Zhi Shan Duan ◽  
Zhong Bin Wei ◽  
Pan Gao

In this paper, a new kind of finite element method (FEM) is proposed, which use the two-dimensional Hermite interpolation scaling function constructed by tensor product as the basis interpolation function of field function, and then combine with the energy functional with related mechanics and variational principle, the wavelet finite element equations for solving elastic thin plate unit that constructed in this paper are derived. Then the bending problem of thin plate is solved very quickly and availably through the matlab program. The numerical example in this paper indicates the correctness and validity of this method, and has high calculation precision and convergence speed. Moreover, it also provides a reliable method to solve the free vibration problem of thin plate and the pipe crack problems.


Sign in / Sign up

Export Citation Format

Share Document