concrete members
Recently Published Documents


TOTAL DOCUMENTS

1735
(FIVE YEARS 331)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 252 ◽  
pp. 113651
Author(s):  
Yu Deng ◽  
Jinyang Gui ◽  
Hexin Zhang ◽  
Alberto Taliercio ◽  
Peng Zhang ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 188
Author(s):  
Manuel Bertulessi ◽  
Daniele Fabrizio Bignami ◽  
Ilaria Boschini ◽  
Marco Brunero ◽  
Maddalena Ferrario ◽  
...  

We present a case study of a Structural Health Monitoring (SHM) hybrid system based on Brillouin Distributed Fiber Optic Sensors (D-FOS), Vibrating Wire (VW) extensometers and temperature probes for an existing historical water penstock bridge positioned in a mountain valley in Valle d’Aosta Region, Northwestern Italy. We assessed Brillouin D-FOS performances for this kind of infrastructure, characterized by a complex structural layout and located in a harsh environment. A comparison with the more traditional strain monitoring technology offered by VW strain gauges was performed. The D-FOS strain cable has been bonded to the concrete members using a polyurethane-base adhesive, ensuring a rigid strain transfer. The raw data from all sensors are interpolated on a unique general timestamp with hourly resolution. Strain data from D-FOS and VW strain gauges are then corrected from temperature effects and compared. Considering the inherent differences between the two monitoring technologies, results show a good overall matching between strain time series collected by D-FOS and VW sensors. Brillouin D-FOS proves to be a good solution in terms of performance and economic investment for SHM systems on complex infrastructures such as hydropower plants, which involve extensive geometry combined with the need for detailed and continuous strain monitoring.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 360
Author(s):  
Zhengyu Wu ◽  
Ali M. Memari ◽  
Jose P. Duarte

This state of the art review paper aims to discuss the results of a literature survey on possible ways to reinforce printed concrete based on existing reinforcement strategies. Just as conventional concrete, for 3D printed concrete to be suitable for large-scale construction, reinforcement is needed to increase the tensile capacity of concrete members and reduce temperature and shrinkage cracking. Despite efforts that are currently underway, the development of proper reinforcement suitable for printed concrete is still very active on the research agenda. As an initial step for designing suitable reinforcement for printed concrete, the existing reinforcement methods for printed concrete as well as conventional cast concrete from the literature are reviewed and summarized. Through the preliminary evaluation of the suitability and effectiveness of various reinforcement methods, guidelines are proposed to better understand possible solutions to reinforce printed concrete and inspire new practical ideas to fill the current technology void. The conclusions also include the possible improvements of the existing reinforcement methods to be considered in future applications.


2022 ◽  
Vol 8 (1) ◽  
pp. 155-166
Author(s):  
Ali I. Salahaldin ◽  
Muyasser M. Jomaa’h ◽  
Nazar A. Oukaili ◽  
Diyaree J. Ghaidan

This research presents an experimental investigation of the rehabilitation efficiency of the damaged hybrid reinforced concrete beams with openings in the shear region. The study investigates the difference in retrofitting ability of hybrid beams compared to traditional beams and the effect of two openings compared with one opening equalized to two holes in the area. Five RC beams classified into two groups, A and B, were primarily tested to full-failure under two-point loads. The first group (A) contained beams with normal weight concrete. The second group (hybrid) included beams with lightweight concrete for web and bottom flange, whereas the top flange was made from normal concrete. Two types of openings were considered in this study, rectangular, with dimensions of 100×200 mm, and two square openings with a side dimension of 100 mm. A full wrapping configuration system for the shear region (failure zone) was adopted in this research. Based on the test results, the repaired beams managed to recover their load carrying capacity, stiffness, and structural performance in different degrees. The normal concrete beam regains its total capacity for all types of openings, while the hybrid beams gain 84% of their strength. The strength of hybrid concrete members compared with normal concrete is 81 and 88% for beams of one opening and two openings, respectively. Doi: 10.28991/CEJ-2022-08-01-012 Full Text: PDF


2022 ◽  
Author(s):  
Siavash Habibi ◽  
Anca C. Ferche ◽  
Frank J. Vecchio

Sign in / Sign up

Export Citation Format

Share Document