scholarly journals Nearly integral homomorphisms of commutative rings

1989 ◽  
Vol 40 (1) ◽  
pp. 1-12 ◽  
Author(s):  
David E. Dobbs

A unital homomorphism f: R → T of commutative rings is said to be nearly integral if the induced map R/I → T/IT is integral for each ideal I of R which properly contains ker (f). This concept leads to new characterisations of integral extensions and fields. For instance, if R is not a field, then an inclusion R → T is integral if and only if it is nearly integral and (R, T) is a lying-over pair. It is also proved that each overring extension of an integral domain R is nearly integral if and only if dim (R) ≤ 1 and the integral closure of R is a Prüfer domain. Related properties and examples are also studied.

2012 ◽  
Vol 11 (06) ◽  
pp. 1250112 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

For a pair of rings S ⊆ T and a nonnegative integer n, an element t ∈ T\S is said to be within n steps of S if there is a saturated chain of rings S = S0 ⊊ S1 ⊊ ⋯ ⊊ Sm = S[t] with length m ≤ n. An integral domain R is said to be n-valuative (respectively, finitely valuative) if for each nonzero element u in its quotient field, at least one of u and u-1 is within n (respectively, finitely many) steps of R. The integral closure of a finitely valuative domain is a Prüfer domain. Moreover, an n-valuative domain has at most 2n + 1 maximal ideals; and an n-valuative domain with 2n + 1 maximal ideals must be a Prüfer domain.


2016 ◽  
Vol 15 (06) ◽  
pp. 1650022 ◽  
Author(s):  
M. Ben Nasr

Let [Formula: see text] be an integral domain with only finitely many overrings, equivalently, a domain such that its integral closure [Formula: see text] is a Prüfer domain with finite spectrum and there are only finitely many rings between [Formula: see text] and [Formula: see text]. Jaballah solved the problem of counting the overrings in the case [Formula: see text] but left the general case as an open problem [A. Jaballah, The number of overrings of an integrally closed domain, Expo. Math. 23 (2005) 353–360, Problem 3.4]. The purpose of this paper is to provide a solution to that problem.


1966 ◽  
Vol 18 ◽  
pp. 1024-1030 ◽  
Author(s):  
Jack Ohm

A Prüfer domain is an integral domainDwith the property that for every proper prime idealPofDthe quotient ringDPis a valuation ring. Examples of such domains are valuation rings and Dedekind domains, a Dedekind domain being merely a noetherian Prüfer domain. The integral closure of the integers in an infinite algebraic extension of the rationals is another example of a Prüfer domain (5, p. 555, Theorem 8). This third example has been studied initially by Krull (4) and then by Nakano (8).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Subramanian Visweswaran

PurposeThe purpose of this article is to determine necessary and sufficient conditions in order that (D, K) to be an S-accr pair, where D is an integral domain and K is a field which contains D as a subring and S is a multiplicatively closed subset of D.Design/methodology/approachThe methods used are from the topic multiplicative ideal theory from commutative ring theory.FindingsLet S be a strongly multiplicatively closed subset of an integral domain D such that the ring of fractions of D with respect to S is not a field. Then it is shown that (D, K) is an S-accr pair if and only if K is algebraic over D and the integral closure of the ring of fractions of D with respect to S in K is a one-dimensional Prüfer domain. Let D, S, K be as above. If each intermediate domain between D and K satisfies S-strong accr*, then it is shown that K is algebraic over D and the integral closure of the ring of fractions of D with respect to S is a Dedekind domain; the separable degree of K over F is finite and K has finite exponent over F, where F is the quotient field of D.Originality/valueMotivated by the work of some researchers on S-accr, the concept of S-strong accr* is introduced and we determine some necessary conditions in order that (D, K) to be an S-strong accr* pair. This study helps us to understand the behaviour of the rings between D and K.


1966 ◽  
Vol 6 (3) ◽  
pp. 351-361 ◽  
Author(s):  
Robert W. Gilmer ◽  
William J. Heinzer

We consider in this paper only commutative rings with identity. When R is considered as a subring of S it will always be assumed that R and S have the same identity. If R is a subring of S an element s of S said to be integral over R if s is the root of a monic polynomial with coefficients in R. Following Krull [8], p. 102, we say s is almost integral over R provided all powers of s belong to a finite R-submodule of S. If R1 is the set of elements of S almost integral over R we say R1 is the complete integral closure of R in S.


Author(s):  
Robert Gilmer

AbstractSuppose D is an integral domain with quotient field K and that L is an extension field of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by Gilmer and Heinzer in 1965.


1982 ◽  
Vol 34 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Leslie G. Roberts

Let A be the co-ordinate ring of a reduced curve over a field k. This means that A is an algebra of finite type over k, A has no nilpotent elements, and that if P is a minimal prime ideal of A, then A/P is an integral domain of Krull dimension one. Let M be a maximal ideal of A. Then G(A) (the graded ring of A relative to M) is defined to be . We get the same graded ring if we first localize at M, and then form the graded ring of AM relative to the maximal ideal MAM. That isLet Ā be the integral closure of A. If P1, P2, …, Ps are the minimal primes of A thenwhere A/Pi is a domain and is the integral closure of A/Pi in its quotient field.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


2016 ◽  
Vol 95 (1) ◽  
pp. 14-21 ◽  
Author(s):  
MABROUK BEN NASR ◽  
NABIL ZEIDI

Let $R\subset S$ be an extension of integral domains, with $R^{\ast }$ the integral closure of $R$ in $S$. We study the set of intermediate rings between $R$ and $S$. We establish several necessary and sufficient conditions for which every ring contained between $R$ and $S$ compares with $R^{\ast }$ under inclusion. This answers a key question that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J. Math. Kyoto Univ.7 (1967), 133–150].


Sign in / Sign up

Export Citation Format

Share Document