scholarly journals On 2-absorbing ideals of commutative rings

2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.

Author(s):  
A. Yassine ◽  
M. J. Nikmehr ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with identity. In this paper, we introduce the concept of [Formula: see text]-absorbing prime ideals which is a generalization of prime ideals. A proper ideal [Formula: see text] of [Formula: see text] is called [Formula: see text]-absorbing prime if for all nonunit elements [Formula: see text] such that [Formula: see text], then either [Formula: see text] or [Formula: see text]. Some properties of [Formula: see text]-absorbing prime are studied. For instance, it is shown that if [Formula: see text] admits a [Formula: see text]-absorbing prime ideal that is not a prime ideal, then [Formula: see text] is a quasi–local ring. Among other things, it is proved that a proper ideal [Formula: see text] of [Formula: see text] is [Formula: see text]-absorbing prime if and only if the inclusion [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text] implies that [Formula: see text] or [Formula: see text]. Also, [Formula: see text]-absorbing prime ideals of PIDs, valuation domains, Prufer domains and idealization of a modules are characterized. Finally, an analogous to the Prime Avoidance Theorem and some applications of this theorem are given.


2010 ◽  
Vol 09 (01) ◽  
pp. 43-72 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

A (commutative integral) domain R is said to be valuative if, for each nonzero element u in the quotient field of R, at least one of R ⊆ R[u] and R ⊆ R[u-1] has no proper intermediate rings. Such domains are closely related to valuation domains. If R is a valuative domain, then R has at most three maximal ideals, and at most two if R is not integrally closed. Also, if R is valuative, the set of nonmaximal prime ideals of R is linearly ordered, at most one maximal ideal of R does not contain each nonmaximal prime of R, and RP is a valuation domain for each prime P except for at most one maximal ideal. Any integrally closed valuative domain is a Bézout domain. Valuation domains are characterized as the quasilocal integrally closed valuative domains. Each one-dimensional Prüfer domain with at most three maximal ideals is valuative.


2004 ◽  
Vol 03 (04) ◽  
pp. 437-443 ◽  
Author(s):  
ALGIRDAS KAUCIKAS ◽  
ROBERT WISBAUER

Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


2019 ◽  
Vol 19 (06) ◽  
pp. 2050111 ◽  
Author(s):  
Ayman Badawi ◽  
Ece Yetkin Celikel

Let [Formula: see text] be a commutative ring with nonzero identity. In this paper, we introduce the concept of 1-absorbing primary ideals in commutative rings. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-absorbing primary ideal of [Formula: see text] if whenever nonunit elements [Formula: see text] and [Formula: see text], then [Formula: see text] or [Formula: see text] Some properties of 1-absorbing primary ideals are investigated. For example, we show that if [Formula: see text] admits a 1-absorbing primary ideal that is not a primary ideal, then [Formula: see text] is a quasilocal ring. We give an example of a 1-absorbing primary ideal of [Formula: see text] that is not a primary ideal of [Formula: see text]. We show that if [Formula: see text] is a Noetherian domain, then [Formula: see text] is a Dedekind domain if and only if every nonzero proper 1-absorbing primary ideal of [Formula: see text] is of the form [Formula: see text] for some nonzero prime ideal [Formula: see text] of [Formula: see text] and a positive integer [Formula: see text]. We show that a proper ideal [Formula: see text] of [Formula: see text] is a 1-absorbing primary ideal of [Formula: see text] if and only if whenever [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text], then [Formula: see text] or [Formula: see text]


2003 ◽  
Vol 46 (1) ◽  
pp. 3-13 ◽  
Author(s):  
D. D. Anderson ◽  
Tiberiu Dumitrescu

AbstractAn integral domain D with identity is condensed (resp., strongly condensed) if for each pair of ideals I, J of D, IJ = {ij ; i ∈ I; j ∈ J} (resp., IJ = iJ for some i ∈ I or IJ = Ij for some j ∈ J). We show that for a Noetherian domain D, D is condensed if and only if Pic(D) = 0 and D is locally condensed, while a local domain is strongly condensed if and only if it has the two-generator property. An integrally closed domain D is strongly condensed if and only if D is a Bézout generalized Dedekind domain with at most one maximal ideal of height greater than one. We give a number of equivalencies for a local domain with finite integral closure to be strongly condensed. Finally, we show that for a field extension k ⊆ K, the domain D = k + XK[[X]] is condensed if and only if [K : k] ≤ 2 or [K : k] = 3 and each degree-two polynomial in k[X] splits over k, while D is strongly condensed if and only if [K : k] ≤ 2.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050034
Author(s):  
H. Behzadipour ◽  
P. Nasehpour

In this paper, we investigate 2-absorbing ideals of commutative semirings and prove that if [Formula: see text] is a nonzero proper ideal of a subtractive valuation semiring [Formula: see text] then [Formula: see text] is a 2-absorbing ideal of [Formula: see text] if and only if [Formula: see text] or [Formula: see text] where [Formula: see text] is a prime ideal of [Formula: see text]. We also show that each 2-absorbing ideal of a subtractive semiring [Formula: see text] is prime if and only if the prime ideals of [Formula: see text] are comparable and if [Formula: see text] is a minimal prime over a 2-absorbing ideal [Formula: see text], then [Formula: see text], where [Formula: see text] is the unique maximal ideal of [Formula: see text].


2019 ◽  
Vol 19 (10) ◽  
pp. 2050199
Author(s):  
Mohammed Issoual ◽  
Najib Mahdou ◽  
Moutu Abdou Salam Moutui

Let [Formula: see text] be a commutative ring with [Formula: see text]. Let [Formula: see text] be a positive integer. A proper ideal [Formula: see text] of [Formula: see text] is called an n-absorbing ideal (respectively, a strongly n-absorbing ideal) of [Formula: see text] as in [D. F. Anderson and A. Badawi, On [Formula: see text]-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672] if [Formula: see text] and [Formula: see text], then there are [Formula: see text] of the [Formula: see text]’s whose product is in [Formula: see text] (respectively, if whenever [Formula: see text] for ideals [Formula: see text] of [Formula: see text], then the product of some [Formula: see text] of the [Formula: see text]s is contained in [Formula: see text]). The concept of [Formula: see text]-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of [Formula: see text] is a 1-absorbing ideal of [Formula: see text]). Let [Formula: see text] be a ring homomorphism and let [Formula: see text] be an ideal of [Formula: see text] This paper investigates the [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals in the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect [Formula: see text] denoted by [Formula: see text] The obtained results generate new original classes of [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals.


2008 ◽  
Vol 77 (3) ◽  
pp. 477-483
Author(s):  
D. D. ANDERSON ◽  
JOHN KINTZINGER

AbstractLet R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of R×S. Unlike the case where R and S have an identity, an ideal (or primary ideal, or maximal ideal) of R×S need not be a ‘subproduct’ I×J of ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if R is an e-ring (that is, for r∈R, there exists er∈R with err=r) (or u-ring (that is, for each proper ideal A of R, $\sqrt {A}\not =R$)), the Abelian group (R/R2 ,+) has no maximal subgroups).


2021 ◽  
Vol 6 (10) ◽  
pp. 10565-10580
Author(s):  
Nour Abed Alhaleem ◽  
◽  
Abd Ghafur Ahmad

<abstract><p>Motivated by the new notion of intuitionistic fuzzy normed ideal, we present and investigate some associated properties of intuitionistic fuzzy normed ideals. We describe the intrinsic product of any two intuitionistic fuzzy normed subsets and show that the intrinsic product of intuitionistic fuzzy normed ideals is a subset of the intersection of these ideals. We specify the notions of intuitionistic fuzzy normed prime ideal and intuitionistic fuzzy normed maximal ideal, we present the conditions under which a given intuitionistic fuzzy normed ideal is considered to be an intuitionistic fuzzy normed prime (maximal) ideal. In addition, the relation between the intuitionistic characteristic function and prime and maximal ideals is generalized. Finally, we characterize relevant properties of intuitionistic fuzzy normed prime ideals and intuitionistic fuzzy normed maximal ideals.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document