scholarly journals Degree of pointedness of a convex function

1996 ◽  
Vol 53 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Alberto Seeger

A convex function f is said to be pointed if its epigraph has a recession cone which is pointed. Partial pointedness of f refers to the case in which such a recession cone is only partially pointed. In this note we show that the degree of pointedness of f is related to the “thickness” of the effective domain of the conjugate function f*.

1967 ◽  
Vol 19 ◽  
pp. 200-205 ◽  
Author(s):  
R. T. Rockafellar

Fenchel's conjugate correspondence for convex functions may be viewed as a generalization of the classical Legendre correspondence, as indicated briefly in (6). Here the relationship between the two correspondences will be described in detail. Essentially, the conjugate reduces to the Legendre transform if and only if the subdifferential of the convex function is a one-to-one mapping. The one-to-oneness is equivalent to differentiability and strict convexity, plus a condition that the function become infinitely steep near boundary points of its effective domain. These conditions are shown to be the very ones under which the Legendre correspondence is well-defined and symmetric among convex functions. Facts about Legendre transforms may thus be deduced using the elegant, geometrically motivated methods of Fenchel. This has definite advantages over the more restrictive classical treatment of the Legendre transformation in terms of implicit functions, determinants, and the like.


1996 ◽  
Vol 143 ◽  
pp. 195-217
Author(s):  
Bui an Ton

Let H, U be two real Hilbert spaces and let g be a proper lower semi-continuous convex function from L2 (0, T;H) into R+. For each t in [0, T], let φ(t,.) be a proper l.s.c. convex function from H into R with effective domain Dφ(t,.)) and let h be a l.s.c. convex function from a closed convex subset u of U into L2(0, T;H) withfor all u in U. The constants γ and C are positive.


1983 ◽  
Vol 20 (04) ◽  
pp. 835-842
Author(s):  
David Assaf

The paper presents sufficient conditions for certain functions to be convex. Functions of this type often appear in Markov decision processes, where their maximum is the solution of the problem. Since a convex function takes its maximum at an extreme point, the conditions may greatly simplify a problem. In some cases a full solution may be obtained after the reduction is made. Some illustrative examples are discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 966
Author(s):  
Anna Dobosz ◽  
Piotr Jastrzębski ◽  
Adam Lecko

In this paper we study a certain differential subordination related to the harmonic mean and its symmetry properties, in the case where a dominant is a linear function. In addition to the known general results for the differential subordinations of the harmonic mean in which the dominant was any convex function, one can study such differential subordinations for the selected convex function. In this case, a reasonable and difficult issue is to look for the best dominant or one that is close to it. This paper is devoted to this issue, in which the dominant is a linear function, and the differential subordination of the harmonic mean is a generalization of the Briot–Bouquet differential subordination.


Author(s):  
Syed Zaheer Ullah ◽  
Muhammad Adil Khan ◽  
Yu-Ming Chu

Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$(η1,η2)-convex function and establish its Hermite–Hadamard type inequality.


Author(s):  
E. Alper Yıldırım

AbstractWe study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.


Sign in / Sign up

Export Citation Format

Share Document