scholarly journals On an optimal control problem for a parabolic inclusion

1996 ◽  
Vol 143 ◽  
pp. 195-217
Author(s):  
Bui an Ton

Let H, U be two real Hilbert spaces and let g be a proper lower semi-continuous convex function from L2 (0, T;H) into R+. For each t in [0, T], let φ(t,.) be a proper l.s.c. convex function from H into R with effective domain Dφ(t,.)) and let h be a l.s.c. convex function from a closed convex subset u of U into L2(0, T;H) withfor all u in U. The constants γ and C are positive.

2000 ◽  
Vol 23 (9) ◽  
pp. 605-616 ◽  
Author(s):  
R. Enkhbat

The problem of maximizing a nonsmooth convex function over an arbitrary set is considered. Based on the optimality condition obtained by Strekalovsky in 1987 an algorithm for solving the problem is proposed. We show that the algorithm can be applied to the nonconvex optimal control problem as well. We illustrate the method by describing some computational experiments performed on a few nonconvex optimal control problems.


We study the time-optimal control problem for an unmanned aerial vehicle (drone) moving in the plane of a constant altitude. A kinematic model is considered where the angular velocity is a control. Such a system is described by Markov-Dubins equations; a large number of works are devoted to solving different optimal and admissible control and stabilization problems for such models. In the papers [T. Maillot, U. Boscain, J.-P. Gauthier, U. Serres, Lyapunov and minimum-time path planning for drones, J. Dyn. Control Syst., V. 21 (2015)] and [M.A.~Lagache, U. Serres, V. Andrieu, Minimal time synthesis for a kinematic drone model, Mathematical Control and Related Fields, V. 7 (2017)] the time optimal control problem is solved where the drone must reach a given unit circle in the minimal possible time and stay on this circle rotating counterclockwise. In particular, in the mentioned works it is shown that is this case the problem is simplified; namely, the problem becomes two-dimensional. In the present paper we consider a natural generalization of the formulation mentioned above: in our problem, the drone must reach a given unit circle in the minimal possible time and stay on this circle, however, both rotating directions are admissible. That is, the drone can rotate clockwise or counterclockwise; the direction is chosen for reasons of minimizing the time of movement. Such a reformulation leads to the time-optimal control problem with two final points. In the paper, we obtain a complete solution of this time-optimal control problem. In particular, we show that the optimal control takes the values $\pm1$ or $0$ and has no more than two switchings. If the optimal control is singular, i.e., contains a piece $u=0$, then this piece is unique and the duration of the last piece equals $\pi/3$; moreover, in this case the optimal control ins non-unique and the final point can be $(0,1)$ as well as $(0,-1)$. If the optimal control is non-singular, i.e., takes the values $\pm1$, then it is unique (except the case when the duration of the last piece equals $\pi/3$) and the optimal trajectory entirely lies in the upper or lower semi-plane. Also, we give a solution of the optimal synthesis problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Xueping Zhu ◽  
Jianjun Zhou

The aim of the present paper is to study an infinite horizon optimal control problem in which the controlled state dynamics is governed by a stochastic delay evolution equation in Hilbert spaces. The existence and uniqueness of the optimal control are obtained by means of associated infinite horizon backward stochastic differential equations without assuming the Gâteaux differentiability of the drift coefficient and the diffusion coefficient. An optimal control problem of stochastic delay partial differential equations is also given as an example to illustrate our results.


Author(s):  
Andrzej Swiech

We study a stochastic optimal control problem for a two scale system driven by an infinite dimensional stochastic differential equation which consists of ``slow'' and ``fast'' components. We use the theory of viscosity solutions in Hilbert spaces to show that as the speed of the fast component goes to infinity, the value function of the optimal control problem converges to the viscosity solution of a reduced effective equation. We consider a rather general case where the evolution is given by an abstract semilinear stochastic differential equation with nonlinear dependence on the controls. The results of this paper generalize to the infinite dimensional case the finite dimensional results of O. Alvarez and M. Bardi and complement the results in Hilbert spaces obtained recently by G. Guatteri and G. Tessitore.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document