scholarly journals Some existence theorems for differential inclusions in Hilbert spaces

1996 ◽  
Vol 54 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Shih-Sen Chang ◽  
Yu-Qing Chen ◽  
Byung Soo Lee

Some existence theorem for solutions of two kinds of differential inclusions with monotone type mappings in Hilbert spaces are given.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Jean-Philippe Mandallena ◽  
Mikhail Sychev

Abstract In the present paper, we establish an existence theorem for non-homogeneous differential inclusions in Sobolev spaces. This theorem extends the results of Müller and Sychev [S. Müller and M. A. Sychev, Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 2001, 2, 447–475; M. A. Sychev, Comparing various methods of resolving differential inclusions, J. Convex Anal. 18 2011, 4, 1025–1045] obtained in the setting of Lipschitz functions. We also show that solutions can be selected with the property of higher regularity.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
F. Aladsani ◽  
A. G. Ibrahim

We have proven an existence theorem concerning the existence of solutions for a functional evolution inclusion governed by sweeping process with closed convex sets depending on time and state and with a noncompact nonconvex perturbation in Banach spaces. This work extends some recent existence theorems concerning sweeping processes from Hilbert spaces setting to Banach spaces setting. Moreover, it improves some recent existence results for sweeping processes in Banach spaces.



2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Tao Chen

A new existence result ofε-vector equilibrium problem is first obtained. Then, by using the existence theorem ofε-vector equilibrium problem, a weaklyε-cone saddle point theorem is also obtained for vector-valued mappings.





1997 ◽  
Vol 29 (1) ◽  
pp. 65-76
Author(s):  
Bui An Ton


1971 ◽  
Vol 23 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Robert Carroll ◽  
Emile State

In this paper we prove some existence theorems for some weak problems with variable domains arising from hyperbolic equations of the type1.1where A = {A(t)} is, for example, a family of elliptic differential operators in space variables x = (x1, …, xn). Thus let H be a separable Hilbert space and let V(t) ⊂ H be a family of Hilbert spaces dense in H with continuous injections i(t): V(t) → H (0 ≦ t ≦ T < ∞). Let V’ (t) be the antidual of V(t) (i.e. the space of continuous conjugate linear maps V(t) → C) and using standard identifications one writes V(t) ⊂ H ⊂ V‘(t).



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shamshad Husain ◽  
Sanjeev Gupta ◽  
Huma Sahper

We introduce and study a new system of generalized nonlinear quasi-variational-like inclusions with H(·,·)-cocoercive operator in Hilbert spaces. We suggest and analyze a class of iterative algorithms for solving the system of generalized nonlinear quasi-variational-like inclusions. An existence theorem of solutions for the system of generalized nonlinear quasi-variational-like inclusions is proved under suitable assumptions which show that the approximate solutions obtained by proposed algorithms converge to the exact solutions.



1998 ◽  
Vol 21 (4) ◽  
pp. 791-800 ◽  
Author(s):  
E. Tarafdar ◽  
Xian-Zhi Yuan

In this paper, the concepts of random maximal elements, random equilibria and random generalized games are described. Secondly by measurable selection theorem, some existence theorems of random maximal elements forLc-majorized correspondences are obtained. Then we prove existence theorems of random equilibria for non-compact one-person random games. Finally, a random equilibrium existence theorem for non-compact random generalized games (resp., random abstract economics) in topological vector spaces and a random equilibrium existence theorem of non-compact random games in locally convex topological vector spaces in which the constraint mappings are lower semicontinuous with countable number of players (resp., agents) are given. Our results are stochastic versions of corresponding results in the recent literatures.



Author(s):  
Zuomao Yan ◽  
Hongwu Zhang

We study the approximate controllability of a class of fractional partial neutral integro-differential inclusions with infinite delay in Hilbert spaces. By using the analytic α-resolvent operator and the fixed point theorem for discontinuous multivalued operators due to Dhage, a new set of necessary and sufficient conditions are formulated which guarantee the approximate controllability of the nonlinear fractional system. The results are obtained under the assumption that the associated linear system is approximately controllable. An example is provided to illustrate the main results.



Sign in / Sign up

Export Citation Format

Share Document