scholarly journals Applications of Fox's derivation in determining the generators of a group

2000 ◽  
Vol 61 (1) ◽  
pp. 27-32
Author(s):  
Wan Lin

We give a necessary and sufficient condition for a set of elements to be a generating set of a quotient group F/N, where F is the free group of rank n and N is a normal subgroup of F. Birman's Inverse Function Theorem is a corollary of our criterion. As an application of this criterion, we give necessary and sufficient conditions for a set of elements of the Burnside group B (n,p) of exponent p and rank n to be a generating set.

2018 ◽  
Vol 28 (01) ◽  
pp. 115-131 ◽  
Author(s):  
V. Metaftsis ◽  
A. I. Papistas ◽  
I. Sevaslidou

We prove that, for any positive integer [Formula: see text], the quotient group [Formula: see text] of the lower central series of the McCool group [Formula: see text] is isomorphic to two copies of the quotient group [Formula: see text] of the lower central series of a free group [Formula: see text] of rank [Formula: see text] as [Formula: see text]-modules. Furthermore, we give a necessary and sufficient condition whether the associated graded Lie algebra [Formula: see text] of [Formula: see text] is naturally embedded into the Johnson Lie algebra [Formula: see text] of the IA-automorphisms of [Formula: see text].


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2000 ◽  
Vol 11 (03) ◽  
pp. 515-524
Author(s):  
TAKESI OKADOME

The paper deals with learning in the limit from positive data. After an introduction and overview of earlier results, we strengthen a result of Sato and Umayahara (1991) by establishing a necessary and sufficient condition for the satisfaction of Angluin's (1980) finite tell-tale condition. Our other two results show that two notions introduced here, the finite net property and the weak finite net property, lead to sufficient conditions for learning in the limit from positive data. Examples not solvable by earlier methods are also given.


Pythagoras ◽  
2010 ◽  
Vol 0 (71) ◽  
Author(s):  
Shunmugam Pillay ◽  
Poobhalan Pillay

The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.


1972 ◽  
Vol 18 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ian Anderson

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let p(S) denote the number of components of the graph G – S with an odd number of vertices. Then the conditionis both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).


1969 ◽  
Vol 1 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Sidney A. Morris

We introduce the concept of a variety of topological groups and of a free topological group F(X, ) of on a topological space X as generalizations of the analogous concepts in the theory of varieties of groups. Necessary and sufficient conditions for F(X, ) to exist are given and uniqueness is proved. We say the topological group FM,(X) is moderately free on X if its topology is maximal and it is algebraically free with X as a free basis. We show that FM(X) is a free topological group of the variety it generates and that if FM(X) is in then it is topologically isomorphic to a quotient group of F(X, ). It is also shown how well known results on free (free abelian) topological groups can be deduced. In the algebraic theory there are various equivalents of a free group of a variety. We examine the relationships between the topological analogues of these. In the appendix a result similar to the Stone-Čech compactification is proved.


Author(s):  
Lu-San Chen ◽  
Cheh-Chih Yeh

SynopsisThis paper studies the equationwhere the differential operator Ln is defined byand a necessary and sufficient condition that all oscillatory solutions of the above equation converge to zero asymptotically is presented. The results obtained extend and improve previous ones of Kusano and Onose, and Singh, even in the usual case wherewhere N is an integer with l≦N≦n–1.


Author(s):  
M. H. Pearl

The notion of the inverse of a matrix with entries from the real or complex fields was generalized by Moore (6, 7) in 1920 to include all rectangular (finite dimensional) matrices. In 1951, Bjerhammar (2, 3) rediscovered the generalized inverse for rectangular matrices of maximal rank. In 1955, Penrose (8, 9) independently rediscovered the generalized inverse for arbitrary real or complex rectangular matrices. Recently, Arghiriade (1) has given a set of necessary and sufficient conditions that a matrix commute with its generalized inverse. These conditions involve the existence of certain submatrices and can be expressed using the notion of EPr matrices introduced in 1950 by Schwerdtfeger (10). The main purpose of this paper is to prove the following theorem:Theorem 2. A necessary and sufficient condition that the generalized inverse of the matrix A (denoted by A+) commute with A is that A+ can be expressed as a polynomial in A with scalar coefficients.


2007 ◽  
Vol 49 (3) ◽  
pp. 431-447 ◽  
Author(s):  
MASATO KIKUCHI

AbstractLet X be a Banach function space over a nonatomic probability space. We investigate certain martingale inequalities in X that generalize those studied by A. M. Garsia. We give necessary and sufficient conditions on X for the inequalities to be valid.


2015 ◽  
Vol 14 (07) ◽  
pp. 1550099 ◽  
Author(s):  
S. Visweswaran ◽  
Hiren D. Patel

Rings considered in this article are commutative with identity which admit at least one nonzero annihilating ideal. For such a ring R, we determine necessary and sufficient conditions in order that the complement of its annihilating ideal graph is connected and also find its diameter when it is connected. We discuss the girth of the complement of the annihilating ideal graph of R and prove that it is either equal to 3 or ∞. We also present a necessary and sufficient condition for the complement of the annihilating ideal graph to be complemented.


Sign in / Sign up

Export Citation Format

Share Document