On generalized inverses of matrices

Author(s):  
M. H. Pearl

The notion of the inverse of a matrix with entries from the real or complex fields was generalized by Moore (6, 7) in 1920 to include all rectangular (finite dimensional) matrices. In 1951, Bjerhammar (2, 3) rediscovered the generalized inverse for rectangular matrices of maximal rank. In 1955, Penrose (8, 9) independently rediscovered the generalized inverse for arbitrary real or complex rectangular matrices. Recently, Arghiriade (1) has given a set of necessary and sufficient conditions that a matrix commute with its generalized inverse. These conditions involve the existence of certain submatrices and can be expressed using the notion of EPr matrices introduced in 1950 by Schwerdtfeger (10). The main purpose of this paper is to prove the following theorem:Theorem 2. A necessary and sufficient condition that the generalized inverse of the matrix A (denoted by A+) commute with A is that A+ can be expressed as a polynomial in A with scalar coefficients.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1386
Author(s):  
Firdaus E. Udwadia

This paper deals with the existence of various types of dual generalized inverses of dual matrices. New and foundational results on the necessary and sufficient conditions for various types of dual generalized inverses to exist are obtained. It is shown that unlike real matrices, dual matrices may not have {1}-dual generalized inverses. A necessary and sufficient condition for a dual matrix to have a {1}-dual generalized inverse is obtained. It is shown that a dual matrix always has a {1}-, {1,3}-, {1,4}-, {1,2,3}-, {1,2,4}-dual generalized inverse if and only if it has a {1}-dual generalized inverse and that every dual matrix has a {2}- and a {2,4}-dual generalized inverse. Explicit expressions, which have not been reported to date in the literature, for all these dual inverses are provided. It is shown that the Moore–Penrose dual generalized inverse of a dual matrix exists if and only if the dual matrix has a {1}-dual generalized inverse; an explicit expression for this dual inverse, when it exists, is obtained irrespective of the rank of its real part. Explicit expressions for the Moore–Penrose dual inverse of a dual matrix, in terms of {1}-dual generalized inverses of products, are also obtained. Several new results related to the determination of dual Moore-Penrose inverses using less restrictive dual inverses are also provided.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


Author(s):  
Guy Bouchitté ◽  
Ornella Mattei ◽  
Graeme W. Milton ◽  
Pierre Seppecher

In many applications of structural engineering, the following question arises: given a set of forces f 1 ,  f 2 , …,  f N applied at prescribed points x 1 ,  x 2 , …,  x N , under what constraints on the forces does there exist a truss structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to such a question for any configuration of the terminal points x 1 ,  x 2 , …,  x N in the two- and three-dimensional cases. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading which corresponds to a finite dimensional linear programming problem. In two dimensions, we show that any such web can be replaced by one in which there are at most P elementary loops, where elementary means that the loop cannot be subdivided into subloops, and where P is the number of forces f 1 ,  f 2 , …,  f N applied at points strictly within the convex hull of x 1 ,  x 2 , …,  x N . In three dimensions, we show that, by slightly perturbing f 1 ,  f 2 , …,  f N , there exists a uniloadable web supporting this loading. Uniloadable means it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide a mechanism for channelling stress in desired ways.


2000 ◽  
Vol 11 (03) ◽  
pp. 515-524
Author(s):  
TAKESI OKADOME

The paper deals with learning in the limit from positive data. After an introduction and overview of earlier results, we strengthen a result of Sato and Umayahara (1991) by establishing a necessary and sufficient condition for the satisfaction of Angluin's (1980) finite tell-tale condition. Our other two results show that two notions introduced here, the finite net property and the weak finite net property, lead to sufficient conditions for learning in the limit from positive data. Examples not solvable by earlier methods are also given.


Pythagoras ◽  
2010 ◽  
Vol 0 (71) ◽  
Author(s):  
Shunmugam Pillay ◽  
Poobhalan Pillay

The centre of mass G of a triangle has the property that the rays to the vertices from G sweep out triangles having equal areas. We show that such points, termed equipartitioning points in this paper, need not exist in other polygons. A necessary and sufficient condition for a quadrilateral to have an equipartitioning point is that one of its diagonals bisects the other. The general theorem, namely, necessary and sufficient conditions for equipartitioning points for arbitrary polygons to exist, is also stated and proved. When this happens, they are in general, distinct from the centre of mass. In parallelograms, and only in them, do the two points coincide.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jin Wang

M M -2 semitensor product is a new and very useful mathematical tool, which breaks the limitation of traditional matrix multiplication on the dimension of matrices and has a wide application prospect. This article aims to investigate the solutions of the matrix equation A ° l X = B with respect to M M -2 semitensor product. The case where the solutions of the equation are vectors is discussed first. Compatible conditions of matrices and the necessary and sufficient condition for the solvability is studied successively. Furthermore, concrete methods of solving the equation are provided. Then, the case where the solutions of the equation are matrices is studied in a similar way. Finally, several examples are given to illustrate the efficiency of the results.


Author(s):  
Namik Ciblak ◽  
Harvey Lipkin

Abstract Orthonormal bases of isotropic vectors for indefinite square matrices are proposed and solved. A necessary and sufficient condition is that the matrix must have zero trace. A recursive algorithm is presented for computer applications. The isotropic vectors of 3 × 3 matrices are solved explicitly. Deviatoric stresses in continuum mechanics, the existence of isotropic vectors (particularly in screw space), and stiffness synthesis by springs are shown to be related to the isotropic vector problem.


2018 ◽  
Vol 6 (5) ◽  
pp. 459-472
Author(s):  
Xujiao Fan ◽  
Yong Xu ◽  
Xue Su ◽  
Jinhuan Wang

Abstract Using the semi-tensor product of matrices, this paper investigates cycles of graphs with application to cut-edges and the minimum spanning tree, and presents a number of new results and algorithms. Firstly, by defining a characteristic logical vector and using the matrix expression of logical functions, an algebraic description is obtained for cycles of graph, based on which a new necessary and sufficient condition is established to find all cycles for any graph. Secondly, using the necessary and sufficient condition of cycles, two algorithms are established to find all cut-edges and the minimum spanning tree, respectively. Finally, the study of an illustrative example shows that the results/algorithms presented in this paper are effective.


Author(s):  
Cailu Wang ◽  
Yuegang Tao

This paper proposes the matrix representation of formal polynomials over max-plus algebra and obtains the maximum and minimum canonical forms of a polynomial function by standardizing this representation into a canonical form. A necessary and sufficient condition for two formal polynomials corresponding to the same polynomial function is derived. Such a matrix method is constructive and intuitive, and leads to a polynomial algorithm for factorization of polynomial functions. Some illustrative examples are presented to demonstrate the results.


1972 ◽  
Vol 18 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ian Anderson

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let p(S) denote the number of components of the graph G – S with an odd number of vertices. Then the conditionis both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).


Sign in / Sign up

Export Citation Format

Share Document