Determination of torsion Abelian groups by their automorphism groups

2003 ◽  
Vol 67 (3) ◽  
pp. 511-519
Author(s):  
P. Schultz ◽  
A. Sebeldin ◽  
A. L. Sylla

An Abelian torsion group is determined by its automorphism group if and only if its locally cyclic component is determined by its automorphism group. We describe the locally cyclic groups that are determined by their automorphism groups.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


1975 ◽  
Vol 78 (3) ◽  
pp. 357-368 ◽  
Author(s):  
B. A. F. Wehrfritz

This paper is devoted to the construction of faithful representations of the automorphism group and the holomorph of an extension of an abelian group by some other group, the representations here being homomorphisms into certain restricted parts of the automorphism groups of smallish abelian groups. We apply these to two very specific cases, namely to finitely generated metabelian groups and to certain soluble groups of finite rank. We describe the applications first.


2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


1980 ◽  
Vol 32 (2) ◽  
pp. 414-420 ◽  
Author(s):  
A. M. Brunner

In this paper, we consider the class of groups G(l, m; k) which are defined by the presentationwhere k, l, m are integers, and |l| > m > 0, k > 0. Groups in this class possess many properties which seem unusual, especially for one-relator groups. The basis for the results obtained below is the determination of endomorphisms.For certain of the groups, we are able to calculate their automorphism groups. One consequence of this is to produce examples of one-relator groups with infinitely generated automorphism groups. This answers a question raised by G. Baumslag (in a colloquium lecture at the University of Waterloo). Our examples are, perhaps, the simplest possible; J. Lewin [10] has found an example of a finitely presented group with an infinitely generated automorphism group.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350150
Author(s):  
S. FOULADI ◽  
R. ORFI

In this paper, we classify all finite groups whose automorphism group is minimal non-abelian.


1987 ◽  
Vol 29 (2) ◽  
pp. 259-265
Author(s):  
Silvana Franciosi ◽  
Francesco de Giovanni

Many authors have investigated the behaviour of the elements of finite order of a group G when finiteness conditions are imposed on the automorphism group Aut G of G. The first result was obtained in 1955 by Baer [1], who proved thata torsion group with finitely many automorphisms is finite. This theorem was generalized by Nagrebeckii in [6], where he proved that if the automorphism group Aut G is finite then the set of elements of finite order of G is a finite subgroup.


1986 ◽  
Vol 29 (2) ◽  
pp. 224-226
Author(s):  
L. G. Sweet ◽  
J. A. MacDougall

AbstractLet A be a finite dimensional algebra (not necessarily associative) over a field, whose automorphism group acts transitively. It is shown that K = GF(2) and A is a Kostrikin algebra. The automorphism group is determined to be a semi-direct product of two cyclic groups. The number of such algebras is also calculated.


2019 ◽  
Vol 35 (6) ◽  
pp. 1405-1432 ◽  
Author(s):  
Mariusz Grech ◽  
Andrzej Kisielewicz

Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


Sign in / Sign up

Export Citation Format

Share Document