MINIMAL NON-ABELIAN GROUPS AS AUTOMORPHISM GROUPS OF FINITE GROUPS

2014 ◽  
Vol 13 (05) ◽  
pp. 1350150
Author(s):  
S. FOULADI ◽  
R. ORFI

In this paper, we classify all finite groups whose automorphism group is minimal non-abelian.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


1985 ◽  
Vol 28 (1) ◽  
pp. 84-90
Author(s):  
Jay Zimmerman

AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.


2003 ◽  
Vol 67 (3) ◽  
pp. 511-519
Author(s):  
P. Schultz ◽  
A. Sebeldin ◽  
A. L. Sylla

An Abelian torsion group is determined by its automorphism group if and only if its locally cyclic component is determined by its automorphism group. We describe the locally cyclic groups that are determined by their automorphism groups.


1975 ◽  
Vol 78 (3) ◽  
pp. 357-368 ◽  
Author(s):  
B. A. F. Wehrfritz

This paper is devoted to the construction of faithful representations of the automorphism group and the holomorph of an extension of an abelian group by some other group, the representations here being homomorphisms into certain restricted parts of the automorphism groups of smallish abelian groups. We apply these to two very specific cases, namely to finitely generated metabelian groups and to certain soluble groups of finite rank. We describe the applications first.


2010 ◽  
Vol 20 (05) ◽  
pp. 671-688
Author(s):  
UZY HADAD

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.


2020 ◽  
Vol 31 (11) ◽  
pp. 2050083
Author(s):  
Constantin Shramov

We classify finite groups acting by birational transformations of a nontrivial Severi–Brauer surface over a field of characteristic zero that are not conjugate to subgroups of the automorphism group. Also, we show that the automorphism group of a smooth cubic surface over a field [Formula: see text] of characteristic zero that has no [Formula: see text]-points is abelian, and find a sharp bound for the Jordan constants of birational automorphism groups of such cubic surfaces.


2007 ◽  
Vol 17 (03) ◽  
pp. 461-505 ◽  
Author(s):  
KEITH A. KEARNES ◽  
STEVEN T. TSCHANTZ

We show that certain finite groups do not arise as the automorphism group of the square of a finite algebraic structure, nor as the automorphism group of a finite, 2-generated, free, algebraic structure.


Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


Sign in / Sign up

Export Citation Format

Share Document