Varieties of topological groups III

1970 ◽  
Vol 2 (2) ◽  
pp. 165-178 ◽  
Author(s):  
Sidney A. Morris

This paper continues the invèstigation of varieties of topological groups. It is shown that the family of all varieties of topological groups with any given underlying algebraic variety is a class and not a set. In fact the family of all β-varieties with any given underlying algebraic variety is a class and not a set. A variety generated by a family of topological groups of bounded cardinal is not a full variety.The varieties V(R) and V(T) generated by the additive group of reals and the circle group respectively each with its usual topology are examined. In particular it is shown that a locally compact Hausdorff abelian group is in V(T) if and only if it is compact. Thus V(R) properly contains V(T).It is proved that any free topological group of a non-indiscrete variety is disconnected. Finally, some comments are made on topologies on free groups.

2008 ◽  
Vol 78 (1) ◽  
pp. 171-176 ◽  
Author(s):  
JANUSZ BRZDȨK

AbstractWe give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.


1985 ◽  
Vol 8 (4) ◽  
pp. 747-754
Author(s):  
G. Rangan

A necessary and sufficient condition for a topological group whose topology can be induced by a total order compatible with the group structure is given and such groups are called ordered or orderable topological groups. A separable totally disconnected ordered topological group is proved to be non-archimedean metrizable while the converse is shown to be false by means of an example. A necessary and sufficient condition for a no-totally disconnected locally compact abelian group to be orderable is also given.


1995 ◽  
Vol 51 (2) ◽  
pp. 309-335 ◽  
Author(s):  
Michael G. Tkačnko

We give some conditions under which, for a given pair (d1, d2) of continuous pseudometrics respectively on X and X3, there exists a continuous semi-norm N on the free topological group F(X) such that N(x · y−1) = d1(x, y) and N(x · y · t−1 · z−1) ≥ d2((x, y), (z, t)) for all x, y, z, t ∈ X. The “extension” results are applied to characterise thin subsets of free topological groups and obtain some relationships between natural uniformities on X2 and those induced by the group uniformities *V, V* and *V* of F(X).


1986 ◽  
Vol 29 (4) ◽  
pp. 478-481
Author(s):  
Bradd Clark ◽  
Victor Schneider

AbstractIt is well known that the lattice of topologies on a set forms a complete complemented lattice. The set of topologies which make G into a topological group form a complete lattice L(G) which is not a sublattice of the lattice of all topologies on G.Let G be an infinite abelian group. No nontrivial Hausdorff topology in L(G) has a complement in L(G). If τ1 and τ2 are locally compact topologies then τ1Λτ2 is also a locally compact group topology. The situation when G is nonabelian is also considered.


1993 ◽  
Vol 114 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Sidney A. Morris ◽  
Vladimir G. Pestov

We prove that any open subgroup of the free abelian topological group on a completely regular space is a free abelian topological group. Moreover, the free topological bases of both groups have the same covering dimension. The prehistory of this result is as follows. The celebrated Nielsen–Schreier theorem states that every subgroup of a free group is free, and it is equally well known that every subgroup of a free abelian group is free abelian. The analogous result is not true for free (abelian) topological groups [1,5]. However, there exist certain sufficient conditions for a subgroup of a free topological group to be topologically free [2]; in particular, an open subgroup of a free topological group on a kω-space is topologically free. The corresponding question for free abelian topological groups asked 8 years ago by Morris [11] proved to be more difficult and remained open even within the realm of kω-spaces. In the present paper a comprehensive answer to this question is obtained.


1975 ◽  
Vol 13 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Peter Nickolas

M.I.Graev has shown that subgroups of free topological groups need not be free. Brown and Hardy, however, have proved that any open subgroup of the free topological group on a kw-space is again a free topological group: indeed, this is true for any closed subgroup for which a Schreier transversal can be chosen continuously. This note provides a proof of this result more direct than that of Brown and Hardy. An example is also given to show that the condition stated in the theorem is not a necessary condition for freeness of a subgroup. Finally, a sharpened version of a particular case of the theorem is obtained, and is applied to the preceding example.


1969 ◽  
Vol 1 (2) ◽  
pp. 145-160 ◽  
Author(s):  
Sidney A. Morris

We introduce the concept of a variety of topological groups and of a free topological group F(X, ) of on a topological space X as generalizations of the analogous concepts in the theory of varieties of groups. Necessary and sufficient conditions for F(X, ) to exist are given and uniqueness is proved. We say the topological group FM,(X) is moderately free on X if its topology is maximal and it is algebraically free with X as a free basis. We show that FM(X) is a free topological group of the variety it generates and that if FM(X) is in then it is topologically isomorphic to a quotient group of F(X, ). It is also shown how well known results on free (free abelian) topological groups can be deduced. In the algebraic theory there are various equivalents of a free group of a variety. We examine the relationships between the topological analogues of these. In the appendix a result similar to the Stone-Čech compactification is proved.


2017 ◽  
Vol 97 (1) ◽  
pp. 110-118 ◽  
Author(s):  
SAAK S. GABRIYELYAN ◽  
SIDNEY A. MORRIS

For a Tychonoff space $X$, let $\mathbb{V}(X)$ be the free topological vector space over $X$, $A(X)$ the free abelian topological group over $X$ and $\mathbb{I}$ the unit interval with its usual topology. It is proved here that if $X$ is a subspace of $\mathbb{I}$, then the following are equivalent: $\mathbb{V}(X)$ can be embedded in $\mathbb{V}(\mathbb{I})$ as a topological vector subspace; $A(X)$ can be embedded in $A(\mathbb{I})$ as a topological subgroup; $X$ is locally compact.


1973 ◽  
Vol 9 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Sidney A. Morris ◽  
H.B. Thompson

For a completely regular space X, G(X) denotes the free topological group on X in the sense of Graev. Graev proves the existence of G(X) by showing that every pseudo-metric on X can be extended to a two-sided invariant pseudo-metric on the abstract group G(X). It is natural to ask if the topology given by these two-sided invariant pseudo-metrics on G(X) is precisely the free topological group topology on G(X). If X has the discrete topology the answer is clearly in the affirmative. It is shown here that if X is not totally disconnected then the answer is always in the negative.


1994 ◽  
Vol 49 (1) ◽  
pp. 59-67
Author(s):  
M.A. Khan

Let G be a nondiscrete locally compact Hausdorff abelian group. It is shown that if G contains an open torsion subgroup, then every proper dense subgroup of G is contained in a maximal subgroup; while if G has no open torsion subgroup, then it has a dense subgroup D such that G/D is algebraically isomorphic to R, the additive group of reals. With each G, containing an open torsion subgroup, we associate the least positive integer n such that the nth multiple of every discontinuous character of G is continuous. The following are proved equivalent for a nondiscrete locally compact abelian group G:(1) The intersection of any two dense subgroups of G is dense in G.(2) The intersection of all dense subgroups of G is dense in G.(3) G contains an open torsion subgroup, and for each prime p dividing the positive integer associated with G, pG is either open or a proper dense subgroup of G.Finally, we construct a locally compact abelian group G with infinitely many dense subgroups satisfying the three equivalent conditions stated above.


Sign in / Sign up

Export Citation Format

Share Document