SUBSPACES OF THE FREE TOPOLOGICAL VECTOR SPACE ON THE UNIT INTERVAL

2017 ◽  
Vol 97 (1) ◽  
pp. 110-118 ◽  
Author(s):  
SAAK S. GABRIYELYAN ◽  
SIDNEY A. MORRIS

For a Tychonoff space $X$, let $\mathbb{V}(X)$ be the free topological vector space over $X$, $A(X)$ the free abelian topological group over $X$ and $\mathbb{I}$ the unit interval with its usual topology. It is proved here that if $X$ is a subspace of $\mathbb{I}$, then the following are equivalent: $\mathbb{V}(X)$ can be embedded in $\mathbb{V}(\mathbb{I})$ as a topological vector subspace; $A(X)$ can be embedded in $A(\mathbb{I})$ as a topological subgroup; $X$ is locally compact.

2003 ◽  
Vol 68 (2) ◽  
pp. 243-265 ◽  
Author(s):  
Peter Nickolas ◽  
Mikhail Tkachenko

We show that the subspace An(X) of the free Abelian topological group A(X) on a Tychonoff space X is locally compact for each n ∈ ω if and only if A2(X) is locally compact if an only if F2(X) is locally compact if and only if X is the topological sum of a compact space and a discrete space. It is also proved that the subspace Fn(X) of the free topological group F(X) is locally compact for each n ∈ ω if and only if F4(X) is locally compact if and only if Fn(X) has pointwise countable type for each n ∈ ω if and only if F4(X) has pointwise countable type if and only if X is either compact or discrete, thus refining a result by Pestov and Yamada. We further show that An(X) has pointwise countable type for each n ∈ ω if and only if A2(X) has pointwise countable type if and only if F2(X) has pointwise countable type if and only if there exists a compact set C of countable character in X such that the complement X \ C is discrete. Finally, we show that F2(X) is locally compact if and only if F3(X) is locally compact, and that F2(X) has pointwise countable type if and only if F3(X) has pointwise countable type.


1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].


2008 ◽  
Vol 78 (3) ◽  
pp. 487-495 ◽  
Author(s):  
CAROLYN E. MCPHAIL ◽  
SIDNEY A. MORRIS

AbstractThe variety of topological groups generated by the class of all abelian kω-groups has been shown to equal the variety of topological groups generated by the free abelian topological group on [0, 1]. In this paper it is proved that the free abelian topological group on a compact Hausdorff space X generates the same variety if and only if X is not scattered.


1993 ◽  
Vol 114 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Sidney A. Morris ◽  
Vladimir G. Pestov

We prove that any open subgroup of the free abelian topological group on a completely regular space is a free abelian topological group. Moreover, the free topological bases of both groups have the same covering dimension. The prehistory of this result is as follows. The celebrated Nielsen–Schreier theorem states that every subgroup of a free group is free, and it is equally well known that every subgroup of a free abelian group is free abelian. The analogous result is not true for free (abelian) topological groups [1,5]. However, there exist certain sufficient conditions for a subgroup of a free topological group to be topologically free [2]; in particular, an open subgroup of a free topological group on a kω-space is topologically free. The corresponding question for free abelian topological groups asked 8 years ago by Morris [11] proved to be more difficult and remained open even within the realm of kω-spaces. In the present paper a comprehensive answer to this question is obtained.


2019 ◽  
Vol 101 (2) ◽  
pp. 311-324
Author(s):  
ARKADY LEIDERMAN ◽  
SIDNEY A. MORRIS

It is proved that the free topological vector space $\mathbb{V}([0,1])$ contains an isomorphic copy of the free topological vector space $\mathbb{V}([0,1]^{n})$ for every finite-dimensional cube $[0,1]^{n}$, thereby answering an open question in the literature. We show that this result cannot be extended from the closed unit interval $[0,1]$ to general metrisable spaces. Indeed, we prove that the free topological vector space $\mathbb{V}(X)$ does not even have a vector subspace isomorphic as a topological vector space to $\mathbb{V}(X\oplus X)$, where $X$ is a Cook continuum, which is a one-dimensional compact metric space. This is also shown to be the case for a rigid Bernstein set, which is a zero-dimensional subspace of the real line.


Mathematika ◽  
2019 ◽  
Vol 65 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Mikołaj Krupski ◽  
Arkady Leiderman ◽  
Sidney Morris

1986 ◽  
Vol 100 (2) ◽  
pp. 347-353 ◽  
Author(s):  
E. Katz ◽  
S. A. Morris ◽  
P. Nickolas

In this paper we prove a theorem which gives general conditions under which the free abelian topological group F(Y) on a space Y can be embedded in the free abeian topological group F(X) on a space X.


Sign in / Sign up

Export Citation Format

Share Document