scholarly journals An elementary existence theorem for entire functions

1971 ◽  
Vol 5 (3) ◽  
pp. 415-419 ◽  
Author(s):  
Kurt Mahler

It is proved that, for any m given distinct real numbers a1, …, am, there exist transcendental entire functions f(z) at most of order m for which all the valuesare rational integers.

2010 ◽  
Vol 53 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Maxim R. Burke

AbstractLet f : ℝn → ℝ be C∞ and let h: ℝn → ℝ be positive and continuous. For any unbounded nondecreasing sequence ﹛ck﹜ of nonnegative real numbers and for any sequence without accumulation points ﹛xm﹜ in ℝn, there exists an entire function g : ℂn → ℂ taking real values on ℝn such thatThis is a version for functions of several variables of the case n = 1 due to L. Hoischen.


1971 ◽  
Vol 12 (2) ◽  
pp. 89-97 ◽  
Author(s):  
J. M. Anderson ◽  
K. G. Binmore

In this note we consider transcendental entire functionswhose power series contain gaps, i.e.where Λ = {λk} is a suitable set of positive integers. We denote the set of all such functions f(z) by E(Λ). As usual M(r) = M(r, f) denotes the maximummodulus of f(z) on the circle |z| = r. The order p and the lower order λ of f(z) are defined byrespectively.


1978 ◽  
Vol 84 (3) ◽  
pp. 497-505 ◽  
Author(s):  
V. Garber

In the theory of the iteration of a rational function or transcendental entire function R(z) of the complex variable z we study the sequence of natural iterates, {Rn(z):n = 0, 1,…}, of R, whereThe domain of definition of the iterates is , the extended complex plane (if R is rational), and (if R is entire transcendental) with the topology of the chordal metric and euclidean metric respectively. Fatou(5) and Julia(9) developed a global theory of the iteration of a rational function. In (6) Fatou extended the theory of (5) to transcendental entire functions. A central role is played in the theory by the F-set, F(R), of R, R rational or entire, which is defined to be the set of points at which the family of iterates do not form a normal family in the sense of Montel.


2009 ◽  
Vol 29 (2) ◽  
pp. 495-514
Author(s):  
DOMINIQUE S. FLEISCHMANN

AbstractIn his paper [The iteration of polynomials and transcendental entire functions. J. Aust. Math. Soc. (Series A)30 (1981), 483–495], Baker proved that the function f defined by has a Baker domain for c sufficiently large. In this paper we use a novel method to prove that f has a Baker domain for all c>0. We also prove that there exists an open unbounded set contained in the Baker domain on which the orbits of points under f are asymptotically horizontal.


1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


1955 ◽  
Vol 7 ◽  
pp. 337-346 ◽  
Author(s):  
R. P. Bambah ◽  
K. Rogers

1. Introduction. Several authors have proved theorems of the following type:Let x0, y0 be any real numbers. Then for certain functions f(x, y), there exist numbers x, y such that1.1 x ≡ x0, y ≡ y0 (mod 1),and1.2 .The first result of this type, but with replaced by min , was given by Barnes (3) for the case when the function is an indefinite binary quadratic form. A generalisation of this was proved by elementary geometry by K. Rogers (6).


Author(s):  
James A. Cochran ◽  
Cheng-Shyong Lee
Keyword(s):  

In a 1975 paper [8], Heinig established the following three inequalities:where A = p/(p + s − λ) with p, s, λ real numbers satisfying p + s > λ,p > 0;where B = p/(2p + sp − λ −1) with p, s, λ real numbers satisfying 2p +sp > λ, + 1, p > 0;where is a sequence of nonnegative real numbers,and C = p[l + l/(p + s−λ)] with p, s, λ real numbers satisfying s > 0, p ≥ 1, and p +s > λ 0.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
DIEGO MARQUES ◽  
JOSIMAR RAMIREZ

In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


Sign in / Sign up

Export Citation Format

Share Document