ON HYPERSTABILITY OF ADDITIVE MAPPINGS ONTO BANACH SPACES

2014 ◽  
Vol 91 (2) ◽  
pp. 278-285 ◽  
Author(s):  
YUNBAI DONG ◽  
BENTUO ZHENG

AbstractLet$(X,+)$be an Abelian group and$E$be a Banach space. Suppose that$f:X\rightarrow E$is a surjective map satisfying the inequality$$\begin{eqnarray}|\,\Vert f(x)-f(y)\Vert -\Vert f(x-y)\Vert \,|\leq {\it\varepsilon}\min \{\Vert f(x)-f(y)\Vert ^{p},\Vert f(x-y)\Vert ^{p}\}\end{eqnarray}$$for some${\it\varepsilon}>0$,$p>1$and for all$x,y\in X$. We prove that$f$is an additive map. However, this result does not hold for$0<p\leq 1$. As an application, we show that if$f$is a surjective map from a Banach space$E$onto a Banach space$F$so that for some${\it\epsilon}>0$and$p>1$$$\begin{eqnarray}|\,\Vert f(x)-f(y)\Vert -\Vert f(u)-f(v)\Vert \,|\leq {\it\epsilon}\min \{\Vert f(x)-f(y)\Vert ^{p},\Vert f(u)-f(v)\Vert ^{p}\}\end{eqnarray}$$whenever$\Vert x-y\Vert =\Vert u-v\Vert$, then$f$preserves equality of distance. Moreover, if$\dim E\geq 2$, there exists a constant$K\neq 0$such that$Kf$is an affine isometry. This improves a result of Vogt [‘Maps which preserve equality of distance’,Studia Math.45(1973) 43–48].

Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1974 ◽  
Vol 76 (1) ◽  
pp. 157-159 ◽  
Author(s):  
Richard Evans

In the structure theory of Banach spaces as developed in (1), an important role is played by subspaces which are the ranges of projections having norm properties akin to those of the classical Banach spaces. A linear projection e on a Banach space V is called an M-projection ifand an L-projection if, insteadA closed subspace J of V is called an M-Summand if it is the range of an M-projection and an M-Ideal if J0 is the range of an L-projection in V′. Every M-Summand is an M-Ideal but the reverse is false.


1989 ◽  
Vol 32 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Erik Christensen ◽  
Allan M. Sinclair

Milutin's Theorem states that if X and Y are uncountable metrizable compact Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379]. Thus there is only one isomorphism class of such Banach spaces. There is also an extensive theory of the Banach–Mazur distance between various classes of classical Banach spaces with the deepest results depending on probabilistic and asymptotic estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach spaceswhere H is the infinite dimensional separable Hilbert space, R is the injective II 1-factor on H, and ≈ denotes Banach space isomorphism. Haagerup informed us of this result, and suggested considering completely bounded isomorphisms; it is a pleasure to acknowledge his suggestion. We replace Banach space isomorphisms by completely bounded isomorphisms that preserve the linear structure and involution, but not the product. One of the two theorems of this paper is a strengthened version of the above result: if N is an injective von Neumann algebra with separable predual and not finite type I of bounded degree, then N is completely boundedly isomorphic to B(H). The methods used are similar to those in Banach space theory with complete boundedness needing a little care at various points in the argument. Extensive use is made of the conditional expectation available for injective algebras, and the methods do not apply to the interesting problems of completely bounded isomorphisms of non-injective von Neumann algebras (see [4] for a study of the completely bounded approximation property).


1969 ◽  
Vol 21 ◽  
pp. 1206-1217 ◽  
Author(s):  
C. W. Mcarthur ◽  
Ivan Singer ◽  
Mark Levin

1. Let E be a Banach space (by this we shall mean, for simplicity, a real Banach space) and (xn,fn) ({xn} ⊂ E, {fn} ⊂ E*) a biorthogonal system, such that {fn} is total on E (i.e. the relations x ∈ E,fn(x) = 0, n = 1, 2, …, imply x = 0). Then it is natural to consider the cone1which we shall call “the cone associated with the biorthogonal system (xn,fn)”. In particular, if {xn} is a basis of E and {fn} the sequence of coefficient functional associated with the basis {xn}, this cone is nothing else but2and we shall call it “the cone associated with the basis {xn}”.


1959 ◽  
Vol 11 (4) ◽  
pp. 195-206 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact Abelian group, and the set of bounded complex (regular countably-additive Borel) measures on G. It is well known that becomes a Banach space if the norm is defined bythe supremum being over all finite sets of disjoint Borel subsets of G.


2010 ◽  
Vol 83 (2) ◽  
pp. 231-240 ◽  
Author(s):  
TROND A. ABRAHAMSEN ◽  
OLAV NYGAARD

AbstractWe define and study λ-strict ideals in Banach spaces, which for λ=1 means strict ideals. Strict u-ideals in their biduals are known to have the unique ideal property; we prove that so also do λ-strict u-ideals in their biduals, at least for λ>1/2. An open question, posed by Godefroy et al. [‘Unconditional ideals in Banach spaces’, Studia Math.104 (1993), 13–59] is whether the Banach space X is a u-ideal in Ba(X), the Baire-one functions in X**, exactly when κu(X)=1; we prove that if κu(X)=1 then X is a strict u-ideal in Ba (X) , and we establish the converse in the separable case.


Author(s):  
Radosław Łukasik

AbstractLet X be a Banach space. Fix a torsion-free commutative and cancellative semigroup S whose torsion-free rank is the same as the density of $$X^{**}$$ X ∗ ∗ . We then show that X is complemented in $$X^{**}$$ X ∗ ∗ if and only if there exists an invariant mean $$M:\ell _\infty (S,X)\rightarrow X$$ M : ℓ ∞ ( S , X ) → X . This improves upon previous results due to Bustos Domecq (J Math Anal Appl 275(2):512–520, 2002), Kania (J Math Anal Appl 445:797–802, 2017), Goucher and Kania (Studia Math 260:91–101, 2021).


1995 ◽  
Vol 117 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Manuel Gonz´lez ◽  
Joaquín M. Gutiérrez

In the study of polynomials acting on Banach spaces, the weak topology is not such a good tool as in the case of linear operators, due to the bad behaviour of the polynomials with respect to the weak convergence. For example,is a continuous polynomial taking a weakly null sequence into a sequence having no weakly Cauchy subsequences. In this paper we show that the situation is not so bad for unconditional series. Recall that is a weakly unconditionally Cauchy series (in short a w.u.C. series) in a Banach space E if for every f ε E* we have that and is an unconditionally converging series (in short an u.c. series) if every subseries is norm convergent.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1989 ◽  
Vol 106 (1) ◽  
pp. 163-168 ◽  
Author(s):  
D. J. H. Garling ◽  
N. Tomczak-Jaegermann

Let (rj) be a Rademacher sequence of random variables – that is, a sequence of independent random variables, with , for each j. A biorthogonal system in a Banach space X is called an RUC-system[l] if for every x in [ej] (the closed linear span of the vectors ej), the seriesconverges for almost every ω. A basis which, together with its coefficient functionals, forms an RUC-system is called an RUC-basis. A biorthogonal system is an RLTC-svstem if and only if there exists 1 ≤ K < ∞ such thatfor each x in [ej]: the RUC-constant of the system is the smallest constant K satisfying (1) (see [1], proposition 1.1).


Sign in / Sign up

Export Citation Format

Share Document