FIBONACCI–MANN ITERATION FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

2017 ◽  
Vol 96 (2) ◽  
pp. 307-316 ◽  
Author(s):  
M. R. ALFURAIDAN ◽  
M. A. KHAMSI

We extend the results of Schu [‘Iterative construction of fixed points of asymptotically nonexpansive mappings’, J. Math. Anal. Appl.158 (1991), 407–413] to monotone asymptotically nonexpansive mappings by means of the Fibonacci–Mann iteration process $$\begin{eqnarray}x_{n+1}=t_{n}T^{f(n)}(x_{n})+(1-t_{n})x_{n},\quad n\in \mathbb{N},\end{eqnarray}$$ where $T$ is a monotone asymptotically nonexpansive self-mapping defined on a closed bounded and nonempty convex subset of a uniformly convex Banach space and $\{f(n)\}$ is the Fibonacci integer sequence. We obtain a weak convergence result in $L_{p}([0,1])$, with $1<p<+\infty$, using a property similar to the weak Opial condition satisfied by monotone sequences.

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 481 ◽  
Author(s):  
Buthinah Dehaish ◽  
Mohamed Khamsi

In this work, we extend the fundamental results of Schu to the class of monotone asymptotically nonexpansive mappings in modular function spaces. In particular, we study the behavior of the Fibonacci–Mann iteration process, introduced recently by Alfuraidan and Khamsi, defined by


Author(s):  
Buthinah A. Bin Dehaish ◽  
Mohamed A Khamsi

In this work, we extend the fundamental results of Schu to the class of monotone asymptotically nonexpansive mappings in modular function spaces. In particular, we study the behavior of the Fibonacci-Mann iteration process defined by $$x_{n+1} = t_n T^{\phi(n)}(x_n) + (1-t_n)x_n,$$ for $n \in \mathbb{N}$, when $T$ is a monotone asymptotically nonexpansive self-mapping.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jinzuo Chen ◽  
Dingping Wu ◽  
Caifen Zhang

We introduce the modified iterations of Mann's type for nonexpansive mappings and asymptotically nonexpansive mappings to have the strong convergence in a uniformly convex Banach space. We study approximation of common fixed point of asymptotically nonexpansive mappings in Banach space by using a new iterative scheme. Applications to the accretive operators are also included.


1999 ◽  
Vol 22 (1) ◽  
pp. 217-220
Author(s):  
B. K. Sharma ◽  
B. S. Thakur ◽  
Y. J. Cho

In this paper, we prove a convergence theorem for Passty type asymptotically nonexpansive mappings in a uniformly convex Banach space with Fréchet-differentiable norm.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Luo Yi Shi ◽  
Ru Dong Chen ◽  
Yu Jing Wu

New △-convergence theorems of iterative sequences for asymptotically nonexpansive mappings in CAT(0) spaces are obtained. Consider an asymptotically nonexpansive self-mapping of a closed convex subset of a CAT(0) space . Consider the iteration process , where is arbitrary and or for , where . It is shown that under certain appropriate conditions on   △-converges to a fixed point of .


2001 ◽  
Vol 27 (11) ◽  
pp. 653-662 ◽  
Author(s):  
Jui-Chi Huang

LetEbe a uniformly convex Banach space,Ca nonempty closed convex subset ofE. In this paper, we introduce an iteration scheme with errors in the sense of Xu (1998) generated by{Tj:C→C}j=1ras follows:Un(j)=an(j)I+bn(j)TjnUn(j−1)+cn(j)un(j),j=1,2,…,r,x1∈C,xn+1=an(r)xn+bn(r)TrnUn(r−1)xn+cn(r)un(r),n≥1, whereUn(0):=I,Ithe identity map; and{un(j)}are bounded sequences inC; and{an(j)},{bn(j)}, and{cn(j)}are suitable sequences in[0,1]. We first consider the behaviour of iteration scheme above for a finite family of asymptotically nonexpansive mappings. Then we generalize theorems of Schu and Rhoades.


Sign in / Sign up

Export Citation Format

Share Document