A NOTE ON THE GENERALISED HYPERSTABILITY OF THE GENERAL LINEAR EQUATION

2017 ◽  
Vol 96 (2) ◽  
pp. 263-273 ◽  
Author(s):  
LADDAWAN AIEMSOMBOON ◽  
WUTIPHOL SINTUNAVARAT

Let $X$ and $Y$ be two normed spaces over fields $\mathbb{F}$ and $\mathbb{K}$, respectively. We prove new generalised hyperstability results for the general linear equation of the form $g(ax+by)=Ag(x)+Bg(y)$, where $g:X\rightarrow Y$ is a mapping and $a,b\in \mathbb{F}$, $A,B\in \mathbb{K}\backslash \{0\}$, using a modification of the method of Brzdęk [‘Stability of additivity and fixed point methods’, Fixed Point Theory Appl.2013 (2013), Art. ID 285, 9 pages]. The hyperstability results of Piszczek [‘Hyperstability of the general linear functional equation’, Bull. Korean Math. Soc.52 (2015), 1827–1838] can be derived from our main result.

2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
D. Miheţ ◽  
R. Saadati ◽  
S. Vaezpour

AbstractWe establish a stability result concerning the functional equation: $\sum\limits_{i = 1}^m {f\left( {mx_i + \sum\limits_{j = 1,j \ne i}^m {x_j } } \right) + f\left( {\sum\limits_{i = 1}^m {x_i } } \right) = 2f\left( {\sum\limits_{i = 1}^m {mx_i } } \right)} $ in a large class of complete probabilistic normed spaces, via fixed point theory.


2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.


Analysis ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 115-126
Author(s):  
Iz-iddine EL-Fassi ◽  
Samir Kabbaj ◽  
Abdellatif Chahbi

AbstractThe purpose of this paper is first to reformulate the fixed point theorem (see Theorem 1 of [J. Brzdȩk, J. Chudziak and Z. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 2011, 17, 6728–6732]) in β-Banach spaces. We also show that this theorem is a very efficient and convenient tool for proving the hyperstability results of the general linear equation in β-Banach spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


Author(s):  
Anna Bahyrycz ◽  
Justyna Sikorska

AbstractLet X, Y be linear spaces over a field $${\mathbb {K}}$$ K . Assume that $$f :X^2\rightarrow Y$$ f : X 2 → Y satisfies the general linear equation with respect to the first and with respect to the second variables, that is, for all $$x,x_i,y,y_i \in X$$ x , x i , y , y i ∈ X and with $$a_i,\,b_i \in {\mathbb {K}}{\setminus } \{0\}$$ a i , b i ∈ K \ { 0 } , $$A_i,\,B_i \in {\mathbb {K}}$$ A i , B i ∈ K ($$i \in \{1,2\}$$ i ∈ { 1 , 2 } ). It is easy to see that such a function satisfies the functional equation for all $$x_i,y_i \in X$$ x i , y i ∈ X ($$i \in \{1,2\}$$ i ∈ { 1 , 2 } ), where $$C_1:=A_1B_1$$ C 1 : = A 1 B 1 , $$C_2:=A_1B_2$$ C 2 : = A 1 B 2 , $$C_3:=A_2B_1$$ C 3 : = A 2 B 1 , $$C_4:=A_2B_2$$ C 4 : = A 2 B 2 . We describe the form of solutions and study relations between $$(*)$$ ( ∗ ) and $$(**)$$ ( ∗ ∗ ) .


1960 ◽  
Vol 34 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Richard G. Swan

2007 ◽  
Vol 16 (4) ◽  
pp. 375-398 ◽  
Author(s):  
Władysław Kulpa ◽  
Andrzej Szymanski

Sign in / Sign up

Export Citation Format

Share Document