DUAL DIFFERENTIATION SPACES

2019 ◽  
Vol 99 (03) ◽  
pp. 467-472
Author(s):  
WARREN B. MOORS ◽  
NEŞET ÖZKAN TAN

We show that if $(X,\Vert \cdot \Vert )$ is a Banach space that admits an equivalent locally uniformly rotund norm and the set of all norm-attaining functionals is residual then the dual norm $\Vert \cdot \Vert ^{\ast }$ on $X^{\ast }$ is Fréchet at the points of a dense subset of $X^{\ast }$ . This answers the main open problem in a paper by Guirao, Montesinos and Zizler [‘Remarks on the set of norm-attaining functionals and differentiability’, Studia Math. 241 (2018), 71–86].

2004 ◽  
Vol 77 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Petar S. Kenderov ◽  
Warren B. Moors

AbstractA Banach space (X, ∥ · ∥) is said to be a dual differentiation space if every continuous convex function defined on a non-empty open convex subset A of X* that possesses weak* continuous subgradients at the points of a residual subset of A is Fréchet differentiable on a dense subset of A. In this paper we show that if we assume the continuum hypothesis then there exists a dual differentiation space that does not admit an equivalent locally uniformly rotund norm.


Author(s):  
Johann Langemets ◽  
Ginés López-Pérez

We prove that every separable Banach space containing an isomorphic copy of $\ell _{1}$ can be equivalently renormed so that the new bidual norm is octahedral. This answers, in the separable case, a question in Godefroy [Metric characterization of first Baire class linear forms and octahedral norms, Studia Math. 95 (1989), 1–15]. As a direct consequence, we obtain that every dual Banach space, with a separable predual and failing to be strongly regular, can be equivalently renormed with a dual norm to satisfy the strong diameter two property.


Author(s):  
A. C. Yorke

AbstractIf the second dual of a Banach space E is smooth at each point of a certain norm dense subset, then its first dual admits a long sequence of norm one projections, and these projections have ranges which are suitable for a transfinite induction argument. This leads to the construction of an equivalent locally uniformly rotund norm and a Markuschevich basis for E*.


1971 ◽  
Vol 12 (1) ◽  
pp. 106-114 ◽  
Author(s):  
J. R. Giles

The purpose of this paper is to show that the various differentiability conditions for the norm of a normed linear space can be characterised by continuity conditions for a certain mapping from the space into its dual. Differentiability properties of the norm are often more easily handled using this characterisation and to demonstrate this we give somewhat more direct proofs of the reflexivity of a Banach space whose dual norm is strongly differentiable, and the duality of uniform rotundity and uniform strong differentiability of the norm for a Banach space.


1976 ◽  
Vol 21 (4) ◽  
pp. 393-409 ◽  
Author(s):  
J. R. Giles

AbstractIn determining geometrical conditions on a Banach space under which a Chebychev set is convex, Vlasov (1967) introduced a smoothness condition of some interest in itself. Equivalent forms of this condition are derived and it is related to uniformly weak differentiability of the norm and rotundity of the dual norm.


1996 ◽  
Vol 54 (1) ◽  
pp. 87-97 ◽  
Author(s):  
M. Coodey ◽  
S. Simons

We shall show how each multifunction on a Banach space determines a convex function that gives a considerable amount of information about the structure of the multifunction. Using standard results on convex functions and a standard minimax theorem, we strengthen known results on the local boundedness of a monotone operator, and the convexity of the interior and closure of the domain of a maximal monotone operator. In addition, we prove that any point surrounded by (in a sense made precise) the convex hull of the domain of a maximal monotone operator is automatically in the interior of the domain, thus settling an open problem.


2008 ◽  
Vol 50 (3) ◽  
pp. 429-432 ◽  
Author(s):  
ANTONIO AIZPURU ◽  
FRANCISCO J GARCÍA-PACHECO

AbstractIt is shown that every L2-summand vector of a dual real Banach space is a norm-attaining functional. As consequences, the L2-summand vectors of a dual real Banach space can be determined by the L2-summand vectors of its predual; for every n ∈ , every real Banach space can be equivalently renormed so that the set of norm-attaining functionals is n-lineable; and it is easy to find equivalent norms on non-reflexive dual real Banach spaces that are not dual norms.


2015 ◽  
Vol 11 (06) ◽  
pp. 1905-1912 ◽  
Author(s):  
Colin Defant

For a real number t, let st be the multiplicative arithmetic function defined by [Formula: see text] for all primes p and positive integers α. We show that the range of a function s-r is dense in the interval (0, 1] whenever r ∈ (0, 1]. We then find a constant ηA ≈ 1.9011618 and show that if r > 1, then the range of the function s-r is a dense subset of the interval [Formula: see text] if and only if r ≤ ηA. We end with an open problem.


Author(s):  
Yousef Saleh

Given an arbitrary measure , this study shows that the set of norm attaining multilinear forms is not dense in the space of all continuous multilinear forms on . However, we have the density if and only if is purely atomic. Furthermore, the study presents an example of a Banach space in which the set of norm attaining operators from into is dense in the space of all bounded linear operators . In contrast, the set of norm attaining bilinear forms on is not dense in the space of continuous bilinear forms on .


2010 ◽  
Vol 83 (2) ◽  
pp. 231-240 ◽  
Author(s):  
TROND A. ABRAHAMSEN ◽  
OLAV NYGAARD

AbstractWe define and study λ-strict ideals in Banach spaces, which for λ=1 means strict ideals. Strict u-ideals in their biduals are known to have the unique ideal property; we prove that so also do λ-strict u-ideals in their biduals, at least for λ>1/2. An open question, posed by Godefroy et al. [‘Unconditional ideals in Banach spaces’, Studia Math.104 (1993), 13–59] is whether the Banach space X is a u-ideal in Ba(X), the Baire-one functions in X**, exactly when κu(X)=1; we prove that if κu(X)=1 then X is a strict u-ideal in Ba (X) , and we establish the converse in the separable case.


Sign in / Sign up

Export Citation Format

Share Document