scholarly journals ON ASYMPTOTIC BASES WHICH HAVE DISTINCT SUBSET SUMS

Author(s):  
SÁNDOR Z. KISS ◽  
VINH HUNG NGUYEN

Abstract Let k and l be positive integers satisfying $k \ge 2, l \ge 1$ . A set $\mathcal {A}$ of positive integers is an asymptotic basis of order k if every large enough positive integer can be represented as the sum of k terms from $\mathcal {A}$ . About 35 years ago, P. Erdős asked: does there exist an asymptotic basis of order k where all the subset sums with at most l terms are pairwise distinct with the exception of a finite number of cases as long as $l \le k - 1$ ? We use probabilistic tools to prove the existence of an asymptotic basis of order $2k+1$ for which all the sums of at most k elements are pairwise distinct except for ‘small’ numbers.

10.37236/1341 ◽  
1997 ◽  
Vol 5 (1) ◽  
Author(s):  
Tom Bohman

A set S of positive integers has distinct subset sums if there are $2^{|S|}$ distinct elements of the set $\left\{ \sum_{x \in X} x: X \subset S \right\} . $ Let $$f(n) = \min\{ \max S: |S|=n {\rm \hskip2mm and \hskip2mm} S {\rm \hskip2mm has \hskip2mm distinct \hskip2mm subset \hskip2mm sums}\}.$$ Erdős conjectured $ f(n) \ge c2^{n}$ for some constant c. We give a construction that yields $f(n) < 0.22002 \cdot 2^{n}$ for n sufficiently large. This now stands as the best known upper bound on $ f(n).$


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


1960 ◽  
Vol 12 ◽  
pp. 374-389 ◽  
Author(s):  
B. M. Stewart

We generalize in several directions a paper by Porges (2) who considered the integer F(A) obtained from the positive integer .1 by taking the sum of the squares of the digits of A. Porges showed that if A > 99, then F(A) < A, so that under iteration of F(A) all the positive integers are divided into a finite number of classes, called orbits in the terminology of Isaacs (1), each containing a finite cycle. For his F(A) Porges showed there are only two orbits: one with the 1-cycle: 1 → 1 ; and the other with the interesting 8-cycle: 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4.Consider the set Z of non-negative integers and choose as a base of enumeration any desired integer B ≧ 2 (not necessarily B = 10). Then only the “digits” 0, 1, 2, … , B — 1 are needed, in suitable multiplicity, to represent any A of Z.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


1991 ◽  
Vol 14 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Clark Kimberling

Associated with any irrational numberα>1and the functiong(n)=[αn+12]is an array{s(i,j)}of positive integers defined inductively as follows:s(1,1)=1,s(1,j)=g(s(1,j−1))for allj≥2,s(i,1)=the least positive integer not amongs(h,j)forh≤i−1fori≥2, ands(i,j)=g(s(i,j−1))forj≥2. This work considers algebraic integersαof degree≥3for which the rows of the arrays(i,j)partition the set of positive integers. Such an array is called a Stolarsky array. A typical result is the following (Corollary 2): ifαis the positive root ofxk−xk−1−…−x−1fork≥3, thens(i,j)is a Stolarsky array.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


2021 ◽  
Vol 14 (2) ◽  
pp. 380-395
Author(s):  
Jiramate Punpim ◽  
Somphong Jitman

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular  numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.


Sign in / Sign up

Export Citation Format

Share Document