Irradiation of early immature Anastrepha ludens stages for the rearing of Doryctobracon areolatus (Hymenoptera: Braconidae), a fruit fly parasitoid

2020 ◽  
Vol 110 (5) ◽  
pp. 630-637 ◽  
Author(s):  
Florida López-Arriaga ◽  
Victor Hugo Gordillo ◽  
Jorge Cancino ◽  
Pablo Montoya

AbstractDoryctobracon areolatus is a native parasitoid of the Neotropical region that presents the highest percentages of natural parasitism of fruit flies of the genus Anastrepha. In the Moscafrut Program SADER-SENASICA, located in Metapa de Domínguez, Chiapas, Mexico, a laboratory colony of this species is maintained on Anastrepha ludens, the Mexican fruit fly, with the aim to scale the production of the parasitoid up to massive levels. In order to eliminate unwanted emergence of adult flies during the rearing process, this study evaluated the effect of irradiation (at doses of 20, 30, 40, and 50 Gy) applied to eggs, and first and second instar larvae of A. ludens; all irradiated stages were subsequently exposed as second instar larvae to adult females of D. areolatus. Irradiation did not affect the eclosion of A. ludens eggs but, at doses of 40 and 50 Gy, it did cause delayed larval development and pupation, as well as lower larval weight. Adult fly emergence was suppressed at all doses, except in eggs irradiated at 20 Gy. Doses of 20 and 30 Gy applied to the eggs and larvae did not affect the emergence, survival, fecundity or flight ability of the emerged parasitoids, but the second instar larvae were easily handled during the rearing process. Our results suggest that D. areolatus can be successfully produced in second instar larvae of A. ludens irradiated at 30 Gy.

EDIS ◽  
1969 ◽  
Vol 2004 (5) ◽  
Author(s):  
Howard V. Weems, Jr. ◽  
John B. Heppner ◽  
Thomas R. Fasulo ◽  
James L. Nation

The Caribbean fruit fly, Anastrepha suspensa (Loew), has also been called the Greater Antilliean fruit fly, the guava fruit fly and the Caribfly. It is a near relative of the Mexican fruit fly, Anastrepha ludens (Loew), and is one of several species of fruit flies which are indigenous to the West Indies and the larvae of which attack several kinds of tropical and subtropical fruits. This document is EENY-196 (originally published as DPI Entomology Circulars 38 and 260), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: March 2001. EENY196/IN353: Caribbean Fruit Fly, Anastrepha suspensa (Loew) (Insecta: Diptera: Tephritidae) (ufl.edu)


2010 ◽  
Vol 64 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Andrew J. F. Edmunds ◽  
Martin Aluja ◽  
Fransico Diaz-Fleischer ◽  
Bruno Patrian ◽  
Leonhard Hagmann

2014 ◽  
Vol 24 (8) ◽  
pp. 925-935 ◽  
Author(s):  
Amanda Ayala ◽  
Ana Mabel Martinez ◽  
Isaac Figueroa ◽  
Samuel Pineda ◽  
Mario Miranda ◽  
...  

1990 ◽  
Vol 53 (4) ◽  
pp. 329-331 ◽  
Author(s):  
GENE E. LESTER ◽  
DAN A. WOLFENBARGER

Percent electrolyte leakage, a measure of membrane integrity, proved to be a good predictor (R2 = 0.99) of cobalt-60 gamma irradiation dose injury on mid-season ‘Ruby Red’ grapefruit Citrus paradisi (Macf.) flavedo tissue (peel). Percent electrolyte leakage on grapefruit peel following a dose-rate of 250 grays/1.0, 2.5, 5.0, and 25.0 min decreased as grays/min (dose-rate) decreased. Total phenols, a biochemical response to irradiation following 250 grays/1.0, 2.5, 5.0, and 25.0 min also decreased as dose-rate decreased, demonstrating that injury to grapefruit peel diminished as 250 grays of gamma irradiation/rate declined. Comparisons of 10 and 20 grays of cobalt-60 gamma irradiation showed that a dose-rate of 10 grays/0.25 min to naked 8-d old Mexican fruit fly Anastrepha ludens (Loew) larvae caused a 90% reduction of adult emergence. Whereas, at 20 grays the reduction was greater than 99% with dose-rates of 20 grays/0.25, 0.5, 1.0, or 100 min. These data show that a gamma irradiation dose capable of reducing fly emergence by >99% will maintain an inhibitory effect even at relatively lower dose-rates. Therefore, once a quarantine security treatment for Mexican fruit fly is established, a lower dose-rate will reduce adult emergence and should impart little damage to grapefruit peel tissue.


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Maria E. Monzon ◽  
Bill Biasi ◽  
Elizabeth J. Mitcham ◽  
Shaojin Wang ◽  
Juming Tang ◽  
...  

The external and internal quality of ‘Fuyu’ persimmon fruit (Diospyros kaki L.) was evaluated after heating with radiofrequency (RF) energy to 48, 50, or 52 °C, holding at the target temperatures for durations ranging from 0.5 to 18 minutes, hydrocooling, and ripening at 20 °C for 12 days. These treatment conditions were identified for control of third instar Mexican fruit fly larvae (Anastrepha ludens). The treatments had no commercially significant effect on firmness, soluble solids content, titratable acidity, or weight loss of the fruit. RF-treated persimmon fruit attained a deeper orange–red skin color than control fruit. There was a greater incidence of slight to moderate flesh browning in fruit heated to 50 and 52 °C as compared with 48 °C. Calyx browning increased slightly in all RF-treated fruit and was the highest in the longer treatments at each temperature. Heating persimmon fruit with RF to 48 °C and then holding for 6 or 12 minutes showed the least damage, and the latter treatment was longer than should be required for a quarantine treatment against the third instar Mexican fruit fly. Holding persimmons for 6.6 minutes at 48 °C should provide control of the Mexican fruit fly and maintain fruit quality. Confirmation tests with infested fruit should be conducted.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 389C-389
Author(s):  
Roberto Lezama-Gutierrez ◽  
Jaime Molina-Ochoa ◽  
Oscar L. Contreras-Ochoa ◽  
Martin Gonzalez-Ramirez ◽  
Oscar Rebolledo-Dominguez ◽  
...  

The susceptibility of third-instar larvae of Anastrepha ludens (Loew) to the entomopathogenic nematodes Steinernema carpocapsae (Weiser) (All and Tecomán strains), S. feltiae (Filiipjev), S. glaseri (Steiner) (NC strain), S. riobrave (Cabanillas, Poinar & Raulston), and Heterorhabditis bacteriophora Poinar (NC, Patronato, and Tecomán strains), was evaluated under laboratory conditions. Sterile distilled water (1.0 mL) with 4000 infective juvenile nematodes were applied on 300 g of moistened sterile soil into 1000-mL pots, and 20 third-instar larvae were placed on the soil surface, 1 mL of distilled water without nematodes was applied as control. Each nematode treatment was replicated four times. After nematode application, pots were incubated at 25 °C. Mortality of larvae and pupae was evaluated 6 and 12 d after inoculation. Cadavers of larvae and pupae were dissected and examined for the presence of nematodes. Our results showed that Mexican fruit larvae were susceptible to entomopathogenic nematodes. S. riobrave and S. carpocapsae All strain caused 90% of larval and pupae cumulative mortality, H. bactetiophora NC strain and S. feltiae killed more than 80%, whereas H. bacteriophora Tecomán and S. glaseri caused a 52.5% mortality. These results suggest that the nematodes S. riobrave and S. carpocapsae All strain have a potential as biological control agents against A. ludens.


Sign in / Sign up

Export Citation Format

Share Document