On a generalisation of monotonic sequences

1970 ◽  
Vol 17 (2) ◽  
pp. 159-164 ◽  
Author(s):  
E. T. Copson

A bounded monotonic sequence is convergent. Dr J. M. Whittaker recently suggested to me a generalisation of this result, that, if a bounded sequence {an} of real numbers satisfies the inequalitythen it is convergent. This I was able to prove by considering the corresponding difference equation

1992 ◽  
Vol 121 (1-2) ◽  
pp. 169-183 ◽  
Author(s):  
B. M. Brown ◽  
W. D. Evans

SynopsisIn 1979 Copson proved the following analogue of the Hardy-Littlewood inequality: if is a sequence of real numbers such that are convergent, where Δan = an+1 – an and Δ2an = Δ(Δan), then is convergent and the constant 4 being best possible. Equality occurs if and only if an = 0 for all n. In this paper we give a result that extends Copson's result to inequalities of the formwhere Mxn =–Δ(pn_l Δxn_l)+qnxn (n = 0, 1, …). The validity of such an inequality and the best possible value of the constant K are determined in terms of the analogue of the Titchmarsh-Weyl m-function for the difference equation Mxn = λwnxn (n = 0, 1, …).


1957 ◽  
Vol 9 ◽  
pp. 79-89 ◽  
Author(s):  
Meyer Jerison

Let M be the normed linear space whose general element, x, is a bounded sequenceof real numbers, and ‖x‖ = l.u.b. |ξn|. Let T denote the linear operation (of norm 1) defined by Tx = (ξ2, ξ3, … , ξn+1,…). A generalized limit is a linear functional ϕ on M which satisfies the conditions.


1969 ◽  
Vol 6 (03) ◽  
pp. 478-492 ◽  
Author(s):  
William E. Wilkinson

Consider a discrete time Markov chain {Zn } whose state space is the non-negative integers and whose transition probability matrix ║Pij ║ possesses the representation where {Pr }, r = 1,2,…, is a finite or denumerably infinite sequence of non-negative real numbers satisfying , and , is a corresponding sequence of probability generating functions. It is assumed that Z 0 = k, a finite positive integer.


1955 ◽  
Vol 7 ◽  
pp. 337-346 ◽  
Author(s):  
R. P. Bambah ◽  
K. Rogers

1. Introduction. Several authors have proved theorems of the following type:Let x0, y0 be any real numbers. Then for certain functions f(x, y), there exist numbers x, y such that1.1 x ≡ x0, y ≡ y0 (mod 1),and1.2 .The first result of this type, but with replaced by min , was given by Barnes (3) for the case when the function is an indefinite binary quadratic form. A generalisation of this was proved by elementary geometry by K. Rogers (6).


Author(s):  
James A. Cochran ◽  
Cheng-Shyong Lee
Keyword(s):  

In a 1975 paper [8], Heinig established the following three inequalities:where A = p/(p + s − λ) with p, s, λ real numbers satisfying p + s > λ,p > 0;where B = p/(2p + sp − λ −1) with p, s, λ real numbers satisfying 2p +sp > λ, + 1, p > 0;where is a sequence of nonnegative real numbers,and C = p[l + l/(p + s−λ)] with p, s, λ real numbers satisfying s > 0, p ≥ 1, and p +s > λ 0.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
G. M. Moremedi ◽  
I. P. Stavroulakis

Consider the first-order delay difference equation with a constant argument Δxn+pnxn-k=0,  n=0,1,2,…, and the delay difference equation with a variable argument Δxn+pnxτn=0,  n=0,1,2,…, where p(n) is a sequence of nonnegative real numbers, k is a positive integer, Δx(n)=x(n+1)-x(n), and τ(n) is a sequence of integers such that τ(n)≤n-1 for all n≥0 and limn→∞τ(n)=∞. A survey on the oscillation of all solutions to these equations is presented. Examples illustrating the results are given.


1994 ◽  
Vol 25 (3) ◽  
pp. 257-265
Author(s):  
J. H. SHEN ◽  
Z. C. WANG ◽  
X. Z. QIAN

Consider the neutral difference equation \[\Delta(x_n- cx_{n-m})+p_nx_{n-k}=0, n\ge N\qquad (*) \] where $c$ and $p_n$ are real numbers, $k$ and $N$ are nonnegative integers, and $m$ is positive integer. We show that if \[\sum_{n=N}^\infty |p_n|<\infty \qquad (**) \] then Eq.(*) has a positive solution when $c \neq 1$. However, an interesting example is also given which shows that (**) does not imply that (*) has a positive solution when $c =1$.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


Sign in / Sign up

Export Citation Format

Share Document