An unpleasant set in a non-locally-convex vector lattice

1973 ◽  
Vol 18 (3) ◽  
pp. 229-233
Author(s):  
J. D. Pryce

In a linear topological space E one often carries out various “ smoothing ” operations on a subset A, such as taking the convex hull co A and the closure A-. If E is also a (real) vector lattice, the solid hullis also a natural “ smoothing out ” of A. If sol A = A then A is called solid, and if E has a base of solid neighbourhoods of 0 as do all the common topological vector lattices such as C(X), Lp, Köthe spaces and so on—then E is called a locally solid space.

1967 ◽  
Vol 7 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Sadayuki Yamamuro

Let E be a vector lattice in the sense of Birkhoff [1]. We use the following notations:


1984 ◽  
Vol 25 (2) ◽  
pp. 141-152 ◽  
Author(s):  
N. J. Kalton

First we recall that a (real) quasi-Banach space X is a complete metrizable real vector space whose topology is given by a quasi-norm satisfyingwhere C is some constant independent of x1 and x2. X is said to be p-normable (or topologically p-convex), where 0 < p ≤ l, if for some constant B we havefor any x1, …, xn, є X. A theorem of Aolci and Rolewicz (see [18]) asserts that if in C = 21/p-1, then X is p-normable. We can then equivalently re-norm X so that in (1.4) B = 1.


1974 ◽  
Vol 10 (3) ◽  
pp. 371-376 ◽  
Author(s):  
Paul F. Conrad

In his paper “On the structure of ordered real vector spaces” (Publ. Math. Debrecen 4 (1955–56), 334–343), Erdös shows that a totally ordered real vector space of countable dimension is order isomorphic to a lexicographic direct sum of copies of the group of real numbers. Brown, in “Valued vector spaces of countable dimension” (Publ. Math. Debrecen 18 (1971), 149–151), extends the result to a valued vector space of countable dimension and greatly simplifies the proof. In this note it is shown that a finite valued vector lattice of countable dimension is order isomorphic to a direct sum of o–simple totally ordered vector spaces. One obtains as corollaries the result of Erdös and the applications that Brown makes to totally ordered spaces.


1970 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
Yau-Chuen Wong

1. Introduction. Let (X, C) be a Riesz space (or vector lattice) with positive cone C. A subset B of X is said to be solid if it follows from |x| ≤ |b| with b in B that x is in B (where |x| denotes the supremum of x and − x). The solid hull of B (absolute envelope of B in the terminology of Roberts (2)) is denoted to be the smallest solid set containing B, and is denoted by SB. A locally convex Hausdorff topology on (X, C) is called a locally solid topology if admits a neighbourhood-base of 0 consisting of solid and convex sets in X; and (X, C, ), where is a locally solid topology, is called a locally convex Riesz space.


1986 ◽  
Vol 38 (1) ◽  
pp. 65-86 ◽  
Author(s):  
N. J. Kalton

Let X be a quasi-Banach space whose dual X* separates the points of X. Then X* is a Banach space under the normFrom X we can construct the Banach envelope Xc of X by defining for x ∊ X, the normThen Xc is the completion of (X, ‖ ‖c). Alternatively ‖ ‖c is the Minkowski functional of the convex hull of the unit ball. Xc has the property that any bounded linear operator L:X → Z into a Banach space extends with preservation of norm to an operator .


1993 ◽  
Vol 35 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Z. Lipecki

We develop some ideas contained in the author's paper [8] which was, in turn, inspired by Bierlein and Stich [5]. The main body of the present paper is divided into three sections. Section 2 is concerned with some vector-lattice-theoretical results. They are then applied to extensions of quasi-measures and measures in Sections 3 and 4, respectively.Let X be a vector lattice, let x ε X+ and let S be a non-empty set. Theorems 1 and 2 describe some properties of the convex set(see Section 2 for the definition of the sum above). The extreme points of Dx,s are characterized in terms of the components of x. It is also shown that if X has the principal projection property and S is countable, then extr Dx,s is, in some sense, large in Dx,s. Furthermore, for finite S, each point in Dx,s is then a sσ-convex combination of extreme ones.


1987 ◽  
Vol 19 (2) ◽  
pp. 454-473 ◽  
Author(s):  
E. G. Coffman ◽  
L. Flatto ◽  
R. R. Weber

We model a selection process arising in certain storage problems. A sequence (X1, · ··, Xn) of non-negative, independent and identically distributed random variables is given. F(x) denotes the common distribution of the Xi′s. With F(x) given we seek a decision rule for selecting a maximum number of the Xi′s subject to the following constraints: (1) the sum of the elements selected must not exceed a given constant c > 0, and (2) the Xi′s must be inspected in strict sequence with the decision to accept or reject an element being final at the time it is inspected.We prove first that there exists such a rule of threshold type, i.e. the ith element inspected is accepted if and only if it is no larger than a threshold which depends only on i and the sum of the elements already accepted. Next, we prove that if F(x) ~ Axα as x → 0 for some A, α> 0, then for fixed c the expected number, En(c), selected by an optimal threshold is characterized by Asymptotics as c → ∞and n → ∞with c/n held fixed are derived, and connections with several closely related, well-known problems are brought out and discussed.


1971 ◽  
Vol 5 (3) ◽  
pp. 331-335 ◽  
Author(s):  
Roger D. Bleier

We show that each archimedean lattice-ordered group is contained in a unique (up to isomorphism) minimal archimedean vector lattice. This improves a result of Paul F. Conrad appearing previously in this Bulletin. Moreover, we show that this relationship between archimedean lattice-ordered groups and archimedean vector lattices is functorial.


Author(s):  
Thomas W. Reiland

Interval-Lipschitz mappings between topological vector spaces are defined and compared with other Lipschitz-type operators. A theory of generalized gradients is presented when both spaces are locally convex and the range space is an order complete vector lattice. Sample applications to the theory of nonsmooth optimization are given.


Sign in / Sign up

Export Citation Format

Share Document