scholarly journals Nonsmooth analysis and optimization on partially ordered vector spaces

Author(s):  
Thomas W. Reiland

Interval-Lipschitz mappings between topological vector spaces are defined and compared with other Lipschitz-type operators. A theory of generalized gradients is presented when both spaces are locally convex and the range space is an order complete vector lattice. Sample applications to the theory of nonsmooth optimization are given.

Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2008 ◽  
Vol 50 (2) ◽  
pp. 271-288
Author(s):  
HELGE GLÖCKNER

AbstractThe General Curve Lemma is a tool of Infinite-Dimensional Analysis that enables refined studies of differentiability properties of maps between real locally convex spaces to be made. In this article, we generalize the General Curve Lemma in two ways. First, we remove the condition of local convexity in the real case. Second, we adapt the lemma to the case of curves in topological vector spaces over ultrametric fields.


1972 ◽  
Vol 14 (1) ◽  
pp. 105-118
Author(s):  
B. D. Craven

If A and B are locally convex topological vector spaces, and B has certain additional structure, then the space L(A, B) of all continuous linear mappings of A into B is characterized, within isomorphism, as the inductive limit of a family of spaces, whose elements are functions, or measures. The isomorphism is topological if L(A, B) is given a particular topology, defined in terms of the seminorms which define the topologies of A and B. The additional structure on B enables L(A, B) to be constructed, using the duals of the normed spaces obtained by giving A the topology of each of its seminorms separately.


1983 ◽  
Vol 35 (2) ◽  
pp. 353-372 ◽  
Author(s):  
Panaiotis K. Pavlakos

M. Sion and T. Traynor investigated ([15]-[17]), measures and integrals having values in topological groups or semigroups. Their definition of integrability was a modification of Phillips-Rickart bilinear vector integrals, in locally convex topological vector spaces.The purpose of this paper is to develop a good notion of an integration process in partially ordered groups, based on their order structure. The results obtained generalize some of the results of J. D. M. Wright ([19]-[22]) where the measurable functions are real-valued and the measures take values in partially ordered vector spaces.Let if be a σ-algebra of subsets of T, X a lattice group, Y, Z partially ordered groups and m : H → F a F-valued measure on H. By F(T, X), M(T, X), E(T, X) and S(T, X) are denoted the lattice group of functions with domain T and with range X, the lattice group of (H, m)-measurable functions of F(T, X) and the lattice group of (H, m)-elementary measurable functions of F(T, X) and the lattice group of (H, m)-simple measurable functions of F(T, X) respectively.


1971 ◽  
Vol 14 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Robert H. Lohman

A well-known embedding theorem of Banach and Mazur [1, p. 185] states that every separable Banach space is isometrically isomorphic to a subspace of C[0, 1], establishing C[0, 1] as a universal separable Banach space. The embedding theorem one encounters in a course in topological vector spaces states that every Hausdorff locally convex space (l.c.s.) is topologically isomorphic to a subspace of a product of Banach spaces.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250045 ◽  
Author(s):  
Mohamed Ali Toumi

Let A be an ℓ-algebra and let θ and ϕ be two endomorphisms of A. The couple (θ, ϕ) is called to be separating if xy = 0 implies θ(x)ϕ(y) = 0. If in addition θ and ϕ are ring endomorphisms of A, then the couple (θ, ϕ) is said to be ring-separating. An additive mapping δ : A → A is called (θ, ϕ)-separating derivation on A if there exists a (θ, ϕ)-separating couple with δ(xy) = δ(x)θ(y) + ϕ(x)δ(y), holds for all x, y ∈ A. If an addition θ, ϕ and δ are continuous, then δ is called a continuous (θ, ϕ)-ring-separating derivation. If in addition the couple (θ, ϕ) is ring-separating then δ is called a continuous (θ, ϕ)-ring-separating derivation. An additive mapping F : A → A is called a continuous generalized (θ, ϕ)-separating derivation on A if F is continuous mapping and if there exists a derivation d : A → A such that θ and ϕ are continuous, (θ, ϕ) is a separating couple and F(xy) = F(x)θ(y) + ϕ(x)d(y), holds for all x, y ∈ A. In this paper, we give a description of continuous (θ, ϕ)-ring-separating derivations on some ℓ-algebras. This generalizes a well-known theorem by Colville, Davis, and Keimel [Positive derivations on f-rings, J. Austral. Math. Soc23 (1977) 371–375] and generalizes the results of Boulabiar in [Positive derivations on almost f-rings, Order19 (2002) 385–395], Ben Amor [On orthosymmetric bilinear maps, Positivity14(1) (2010) 123–130] and Toumi et al. in [Order bounded derivations on Archimedean almost f-algebras, Positivity14(2) (2010) 239–245]. Moreover, inspiring from [Toumi, Order-bounded generalized derivations on Archimedean almost f-algebras, Commun. Algebra38(1) (2010) 154–164], it is shown that the notion of continuous generalized (θ, ϕ)-separating derivation on an archimedean almost f-algebra A is the concept of generalized θ-multiplier, that is an additive mapping satisfying F(xyz) = F(x)θ(yz), for all x, y, z ∈ A. In the case where A is an archimedean f-algebra, the situation improves. Indeed, the collection of all continuous generalized (θ, ϕ)-separating derivation on A coincides with the concept of θ-multiplier, that is an additive mapping satisfying F(xy) = F(x)θ(y), for all x, y ∈ A. If in addition A is a Dedekind complete vector lattice and θ is a positive mapping, then the set of all order bounded generalized of the form (θ, ϕ)-separating derivations on A, under composition, is an archimedean lattice-ordered algebra.


Sign in / Sign up

Export Citation Format

Share Document