The order-bound topology on Riesz spaces

1970 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
Yau-Chuen Wong

1. Introduction. Let (X, C) be a Riesz space (or vector lattice) with positive cone C. A subset B of X is said to be solid if it follows from |x| ≤ |b| with b in B that x is in B (where |x| denotes the supremum of x and − x). The solid hull of B (absolute envelope of B in the terminology of Roberts (2)) is denoted to be the smallest solid set containing B, and is denoted by SB. A locally convex Hausdorff topology on (X, C) is called a locally solid topology if admits a neighbourhood-base of 0 consisting of solid and convex sets in X; and (X, C, ), where is a locally solid topology, is called a locally convex Riesz space.

Author(s):  
D. H. Fremlin

The purpose of this paper and the next is to demonstrate that the ‘perfect Riesz spaces’ of (1) are an effective abstraction of the ‘espaces de Köthe’ of (2). I shall follow the ideas of (1), with certain changes in notation:If L is a Riesz space and x, y ∈ L, let us denote sup (x, y) by x ∧ y and inf (x, y) by x ∧ y. I shall use the convenient if informal notation xr↓ ((1), section 16·1) and shall in this usage assume that 0 ∈ {r} and that x0 ≥ xτ for all τ. A set A ⊆ L is solid if x ∈ A and |y| ≤ |x| together imply that y ∈ A; A is then balanced. The solid hull of A is the set {y: ∃ x ∈ A, |y| ≤ |x|}; this is the smallest solid set containing A. An ‘ideal’ ((1), section 17) is then a solid subspace.


1973 ◽  
Vol 18 (3) ◽  
pp. 229-233
Author(s):  
J. D. Pryce

In a linear topological space E one often carries out various “ smoothing ” operations on a subset A, such as taking the convex hull co A and the closure A-. If E is also a (real) vector lattice, the solid hullis also a natural “ smoothing out ” of A. If sol A = A then A is called solid, and if E has a base of solid neighbourhoods of 0 as do all the common topological vector lattices such as C(X), Lp, Köthe spaces and so on—then E is called a locally solid space.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1512
Author(s):  
Juan Luis García Guirao ◽  
Mobashir Iqbal ◽  
Zia Bashir ◽  
Tabasam Rashid

This paper aims to study fuzzy order bounded linear operators between two fuzzy Riesz spaces. Two lattice operations are defined to make the set of all bounded linear operators as a fuzzy Riesz space when the codomain is fuzzy Dedekind complete. As a special case, separation property in fuzzy order dual is studied. Furthermore, we studied fuzzy norms compatible with fuzzy ordering (fuzzy norm Riesz space) and discussed the relation between the fuzzy order dual and topological dual of a locally convex solid fuzzy Riesz space.


1989 ◽  
Vol 105 (3) ◽  
pp. 523-536 ◽  
Author(s):  
G. Buskes ◽  
A. van Rooij

Many facts in the theory of general Riesz spaces are easily verified by thinking in terms of spaces of functions. A proof via this insight is said to use representation theory. In recent years a growing number of authors has successfully been trying to bypass representation theorems, judging them to be extraneous. (See, for instance, [9,10].) In spite of the positive aspects of these efforts the following can be said. Firstly, avoiding representation theory does not always make the facts transparent. Reading the more cumbersome constructions and procedures inside the Riesz space itself one feels the need for a pictorial representation with functions, and one suspects the author himself of secret heretical thoughts. Secondly, the direct method leads to repeating constructions of the same nature over and over again.


2011 ◽  
Vol 9 (3) ◽  
pp. 283-304 ◽  
Author(s):  
A. Boccuto ◽  
D. Candeloro ◽  
A. R. Sambucini

A Fubini-type theorem is proved, for the Kurzweil-Henstock integral of Riesz-space-valued functions defined on (not necessarily bounded) subrectangles of the “extended” real plane.


Author(s):  
Thomas W. Reiland

Interval-Lipschitz mappings between topological vector spaces are defined and compared with other Lipschitz-type operators. A theory of generalized gradients is presented when both spaces are locally convex and the range space is an order complete vector lattice. Sample applications to the theory of nonsmooth optimization are given.


1975 ◽  
Vol 27 (6) ◽  
pp. 1378-1383 ◽  
Author(s):  
Marilyn Breen

Let S be a subset of Rd. A point x in 5 is a point of local convexity of S if and only if there is some neighborhood N of x such that, if y, z ∈ N ᑎ 5, then [y, z] ⊆ S. If S fails to be locally convex at some point q in S then q is called a point of local nonconvexity (lnc point) of S.


1972 ◽  
Vol 24 (2) ◽  
pp. 306-311 ◽  
Author(s):  
K. K. Kutty ◽  
J. Quinn

In this paper we give some new characterizations of the projection property in Archimedean Riesz spaces. Our approach primarily explores the interrelationships between such things as the band structure or the prime ideal structure of an Archimedean vector lattice and corresponding structures of its Dedekind completion. Our results show that, in general, there is a ‘strong“ relationship if and only if the original vector lattice has the projection property. The main result of this paper is Theorem 2.6 which both summarizes and extends all of the results we obtain prior to it.


Sign in / Sign up

Export Citation Format

Share Document