scholarly journals Leading coefficients and cellular bases of Hecke algebras

2009 ◽  
Vol 52 (3) ◽  
pp. 653-677 ◽  
Author(s):  
Meinolf Geck

AbstractLet H be the generic Iwahori–Hecke algebra associated with a finite Coxeter group W. Recently, we have shown that H admits a natural cellular basis in the sense of Graham and Lehrer, provided that W is a Weyl group and all parameters of H are equal. The construction involves some data arising from the Kazhdan–Lusztig basis {Cw} of H and Lusztig's asymptotic ring J}. We attempt to study J and its representation theory from a new point of view. We show that J can be obtained in an entirely different fashion from the generic representations of H, without any reference to {Cw}. We then extend the construction of the cellular basis to the case where W is not crystallographic. Furthermore, if H is a multi-parameter algebra, we see that there always exists at least one cellular structure on H. Finally, the new construction of J may be extended to Hecke algebras associated with complex reflection groups.

2010 ◽  
Vol 197 ◽  
pp. 175-212
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite seriesG(de, e, r), thus completing their calculation for all complex reflection groups.


1998 ◽  
Vol 50 (1) ◽  
pp. 167-192 ◽  
Author(s):  
Tom Halverson ◽  
Arun Ram

AbstractIwahori-Hecke algebras for the infinite series of complex reflection groups G(r, p, n) were constructed recently in the work of Ariki and Koike [AK], Broué andMalle [BM], and Ariki [Ari]. In this paper we give Murnaghan-Nakayama type formulas for computing the irreducible characters of these algebras. Our method is a generalization of that in our earlier paper [HR] in whichwe derivedMurnaghan-Nakayama rules for the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In both papers we have been motivated by C. Greene [Gre], who gave a new derivation of the Murnaghan-Nakayama formula for irreducible symmetric group characters by summing diagonal matrix entries in Young's seminormal representations. We use the analogous representations of the Iwahori-Hecke algebra of G(r, p, n) given by Ariki and Koike [AK] and Ariki [Ari].


2010 ◽  
Vol 197 ◽  
pp. 175-212 ◽  
Author(s):  
Maria Chlouveraki

The Rouquier blocks of the cyclotomic Hecke algebras, introduced by Rouquier, are a substitute for the families of characters defined by Lusztig for Weyl groups, which can be applied to all complex reflection groups. In this article, we determine them for the cyclotomic Hecke algebras of the groups of the infinite series G(de, e, r), thus completing their calculation for all complex reflection groups.


2011 ◽  
Vol 10 (05) ◽  
pp. 979-993 ◽  
Author(s):  
MARIA CHLOUVERAKI ◽  
NICOLAS JACON

We study the Schur elements and the a-function for cyclotomic Hecke algebras. As a consequence, we show the existence of canonical basic sets, as defined by Geck–Rouquier, for certain complex reflection groups. This includes the case of finite Weyl groups for all choices of parameters (in characteristic 0).


2011 ◽  
Vol 14 ◽  
pp. 271-290 ◽  
Author(s):  
Maria Chlouveraki ◽  
Hyohe Miyachi

AbstractWe calculate all decomposition matrices of the cyclotomic Hecke algebras of the rank two exceptional complex reflection groups in characteristic zero. We prove the existence of canonical basic sets in the sense of Geck–Rouquier and show that all modular irreducible representations can be lifted to the ordinary ones.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Fabrizio Caselli ◽  
Roberta Fulci

International audience A finite subgroup $G$ of $GL(n,\mathbb{C})$ is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements $g \in G$ such that $g \bar{g}=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups. If $G$ is a classical Weyl group this result is much refined in a way which is compatible with the Robinson-Schensted correspondence on involutions. Un sous-groupe fini $G$ de GL(n,ℂ) est dit involutoire si la somme des dimensions de ses représentations irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c'est-a-dire le nombre de éléments $g \in G$ tels que $g \bar{g}=1$, où le bar dénote la conjugaison complexe. Un modèle combinatoire uniforme est construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les familles de groupes de Coxeter finis irréductibles. Si $G$ est un groupe de Weyl ce résultat peut se raffiner d'une manière compatible avec la correspondance de Robinson-Schensted sur les involutions.


Sign in / Sign up

Export Citation Format

Share Document