scholarly journals The Mus musculus musculus type Y chromosome predominates in Asian house mice

1987 ◽  
Vol 50 (3) ◽  
pp. 195-198 ◽  
Author(s):  
Yutaka Nishioka ◽  
Estelle Lamothe

SummaryUsing a mouse Y chromosomal repetitive sequence that differentiates between the Mus musculus musculus type Y chromosome and the M. m. domesticus type Y chromosome, we studied the Y chromosome in M. m. molossinus, M. m. castaneus and M. m. subspecies specimens recently trapped in Japan, Taiwan and China as well as Asian mice maintained at the Jackson Laboratory and Litton Bionetics. Here we report that the M. m. musculus type Y chromosome predominates in Asian house mice and that Japanese mice maintained at some laboratories may not represent typical M. m. molossinus.

2014 ◽  
Vol 23 (17) ◽  
pp. 4387-4405 ◽  
Author(s):  
Meidong Jing ◽  
Hon-Tsen Yu ◽  
Xiaoxin Bi ◽  
Yung-Chih Lai ◽  
Wei Jiang ◽  
...  

Virology ◽  
2018 ◽  
Vol 521 ◽  
pp. 92-98 ◽  
Author(s):  
Dagmar Čížková ◽  
Stuart J.E. Baird ◽  
Jana Těšíková ◽  
Sebastian Voigt ◽  
Ďureje Ľudovít ◽  
...  

Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 534-537
Author(s):  
Yutaka Nishioka

A Y chromosomal repetitive sequence identified two types of Y chromosomes in mice (Mus musculus domesticus) caught near Ste. Anne de Bellevue, Quebec. One type is apparently identical to the Y chromosome found in Maryland, Delaware, and California, whereas the other type is similar, but not identical, to the Y chromosome present in M.m. poschiavinus, an Alpine race of M.m. domesticus. These findings suggest that the domesticus Y chromosome is highly polymorphic and thus useful for elucidating the relationships among American and European house mouse populations.Key words: mouse Y chromosome, polymorphism, Mus musculus domesticus, repetitive sequence, Quebec.


Nature ◽  
1985 ◽  
Vol 315 (6014) ◽  
pp. 70-72 ◽  
Author(s):  
C. E. Bishop ◽  
P. Boursot ◽  
B. Baron ◽  
F. Bonhomme ◽  
D. Hatat

2010 ◽  
Vol 79 (3) ◽  
pp. 757-764 ◽  
Author(s):  
Kerstin Musolf ◽  
Frauke Hoffmann ◽  
Dustin J. Penn

Genome ◽  
1988 ◽  
Vol 30 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Flavie Vanlerberghe ◽  
Pierre Boursot ◽  
Josette Catalan ◽  
Svestoslav Gerasimov ◽  
François Bonhomme ◽  
...  

The hybrid zone between the two subspecies of mice Mus musculus domesticus and Mus musculus musculus, which has been studied extensively in Denmark, crosses Europe to the Black Sea through the Alps and the Balkans. Two hundred and seventy-nine animals were captured in 22 localities along a transect across the Balkans. The animals were characterized for seven diagnostic nuclear loci by protein electrophoresis and by restriction pattern analysis of their mitochondrial DNA. The nuclear data show a sharp transition between the two subspecies, most of the variations in allele frequencies (from 0.9 to 0.1) occurring within a 36-km section of the transect. The introgression varies from one locus to the other and is more pronounced, in terms of distance, in M. m. musculus territory. Mitochondrial DNA introgression is important but occurs in one direction only, i.e. from M. m. musculus to M. m. domesticus, while a cytoplasmic transfer from M. m. domesticus to M. m. musculus has been reported. A previous study showed that no Y chromosome introgression occurs. The different behaviour of these three types of markers could be due to the interaction between selection against hybrid genomes and meiotic recombination. Objectively, it would appear that the genes that can introgress are neutral or nearly so and have been separated from deleterious genes they were linked to by recombination. This could explain the differential introgression between autosomal loci. The mitochondrial and Y chromosomes undergo no or very little recombination and each is transmitted as a whole. Their degree of introgression is thus indicative of the intensity of selection resulting from the amount of functional differentiation between the two taxa, which seems to be strong for the Y chromosome and weak for mitochondrial DNA. We propose that the asymmetry of nuclear introgression is due to different population structures. As M. m. musculus is relatively less structured, the rapid spreading of introgressed genes would be favoured. Such a scheme, however, can hardly account for the unidirectionality of the mitochondrial flow, which could be due to sex-dependant behaviour.Key words: mice, hybrid zone, introgression, enzyme polymorphism.


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0188647 ◽  
Author(s):  
Sarah M. Zala ◽  
Doris Reitschmidt ◽  
Anton Noll ◽  
Peter Balazs ◽  
Dustin J. Penn

Sign in / Sign up

Export Citation Format

Share Document