house mice
Recently Published Documents


TOTAL DOCUMENTS

1169
(FIVE YEARS 120)

H-INDEX

70
(FIVE YEARS 4)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 197
Author(s):  
Shannon Sked ◽  
Chaofeng Liu ◽  
Salehe Abbar ◽  
Robert Corrigan ◽  
Richard Cooper ◽  
...  

The house mouse, Mus musculus domesticus, creates significant public health risks for residents in low-income multi-family dwellings (MFDs). This study was designed to evaluate the spatial distribution of house mice in MFDs. Four low-income high-rise apartment buildings in three cities in New Jersey were selected for building-wide monitoring on two occasions with approximately one year between the monitoring events. The presence of a house mouse infestation was determined by placing mouse bait stations with three different non-toxic baits for a one-week period in all accessible units as well as common areas. Permutation tests were conducted to evaluate house mouse infestation spatial patterns. All four analyzed buildings exhibited a significant correlation between apartments with house mouse infestations and whether they share a common wall or ceiling/floor at both sampling periods except one building during the second inspection, which contained a high number of isolated apartments. Foraging ranges, speed of locomotion, and dispersal behavior of house mice are relatively larger, faster, and more common, respectively, compared to common urban arthropod pests. This could lead to the conclusion that house mice are as likely to infest non-neighboring apartments as those that share a wall or floor/ceiling. However, these results demonstrate that house mouse infestations tend to occur among apartments that share common walls or ceilings/floors. This spatial distribution pattern can be utilized in rodent management plans to improve the efficiency of house mouse management programs in MFDs.


2022 ◽  
Vol 45 (2) ◽  
pp. 21-25
Author(s):  
Shaymaa A Majeed ◽  
Amer M Al-Amery

The prevalence of house mice (Mus musculus) Hymenolepiasis was determined in Baghdad, Iraq to study the effects of location, sex, and months on the infection rate of Hymenolepis spp. in house mice. Fifty house mice were captured from Abu Ghraib and Al-Ameriya, Baghdad, Iraq and examined for detecting parasites in laboratory in College of Veterinary Medicine, University of Baghdad. The total infection prevalence of intestinal parasites was 11 (22%) out of 50 samples, the higher prevalence was 28.57% and found in Abu Ghraib area, while lower was (13.63%) and recorded in Al-Ameriya area. The study revealed that the house mice were infected with two species of Hymenolepis: Hymenolepis nana 4 (8%) and Hymenolepis diminuta 7(14%). The intestinal parasites revealed a significance prevalence value (P<0.05). There was statistical difference in between males and females in parasites infection, in which the higher rate was 8 (27.58%) and recorded in males and the lower was 3 (14.28%) and observed in females. The monthly distribution of confirmed cases over a 9-month period revealed that reported cases of house mice and Hymenolepiasis increased significantly (P<0.01) in autumn (65.44%), followed by winter (15.38%), and summer (13.33%). The findings showed that house mice play an important role in the spread of zoonotic parasitic illnesses to people, as well as attention must pay to public health.


Genetics ◽  
2021 ◽  
Author(s):  
Elizabeth J Beckman ◽  
Felipe Martins ◽  
Taichi A Suzuki ◽  
Ke Bi ◽  
Sara Keeble ◽  
...  

Abstract Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely non-overlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.


2021 ◽  
Author(s):  
Lyn A Hinds ◽  
Steve Henry ◽  
Nikki Van de Weyer ◽  
Freya Robinson ◽  
Wendy A Ruscoe ◽  
...  

BACKGROUND: The efficacy of zinc phosphide (ZnP) for broadacre control of wild house mice in Australia is being reported by growers as increasingly variable. Have mice become less sensitive over time or are they taking a sub-lethal dose and developing aversion? In this laboratory study the sensitivity of groups of wild caught and an outbred laboratory strain of mice was assessed using oral gavage of a range of ZnP concentrations. The willingness of mice to consume ZnP-coated grains was then determined. RESULTS: Each mouse group had very similar LD50 values (72 to 79 mg ZnP per kg body weight) which are significantly higher than previously reported. Time to death post-gavage ranged between 2.5 to 48 h. ZnP coated grains (50 mg ZnP per kg grain) presented in the absence of alternative food were consumed and 94 percent of wild mice died. Mice provided with alternative food and ZnP coated wheat grains (either 25 or 50 mg ZnP per kg grain) consumed toxic and non-toxic grains, and mortality was lower (33 to 55 percent). If a sublethal amount of ZnP coated grain was consumed, aversion occurred mostly in the presence of alternative food. CONCLUSIONS: The sensitivity of wild house mice to ZnP in Australia is significantly lower than previously assumed. Under laboratory conditions ZnP coated grains coated with a new higher dose (50 mg ZnP per kg grain) were readily consumed. Consumption of toxic grain occurred when alternative food was available but was decreased. It is important to assess the efficacy of the higher ZnP dose per grain under natural field conditions, especially when background food is low.


2021 ◽  
Author(s):  
◽  
Hannah Stilborn

<p>Introduced mammalian pests, such as rats (Rattus spp.), house mice (Mus musculus), brushtail possums (Trichosurus vulpecula), and European hedgehogs (Erinaceus europaeus), have been implicated in the suppression or extinction of many endemic invertebrate species in New Zealand, including the large-bodied giant wētā (Anostostomatidae: Deinacrida). The Mahoenui giant wētā (MGW; D. mahoenui) is the only lowland giant wētā species still naturally present on the mainland of New Zealand, where the last remaining individuals of the original population are currently restricted to an 187ha mainland reserve (Mahoenui Giant Wētā Scientific Reserve; MGWSR) in Mahoenui, western King Country. Having sought refuge in the introduced woody shrub, gorse (Ulex europaeus), these wētā have survived in the presence of introduced mammalian predators for almost six decades. However, due to natural succession, the reserve is gradually reverting to native bush and wētā monitoring data shows potential signs of population decline. Concerns for the species survival have been raised as it is unknown how wētā will cope in an altered habitat alongside mammalian predators.  In chapter 2, we used 14-years’ of site-occupancy monitoring data to explore changes to the reserves’ gorse mosaic and MGW population. We additionally assessed the effect of abiotic covariates on MGW occupancy and detection probabilities in 2005 and 2018. Furthermore, we assessed mammalian pest population dynamics within the reserve over the past seven years. Significant changes to the reserve’s gorse mosaic were identified, whereby unbrowsed, tall bushes, which may provide less protection to wētā, are now dominant in 2018. Population trajectory analysis revealed the MGW population has decline since 2012. This result was consistent with naïve occupancy estimates and the increase in search time (0.3hrs/year) required to find wētā, suggesting the population is in a state of decline. Plot location was identified as an important covariate for predicting MGW occupancy in 2018, whereby plots in edge habitat, potentially being preferred or safer, had a higher occupancy probability. Mammalian pests (rats, house mice, brushtail possums, and European hedgehogs) appear to be present within the reserve year-round, populations peaking in summer and autumn.  In chapter 3, we used radiotelemetry to explore MGW survival rates, movement patterns, and diurnal refuge use in gorse and native vegetation during summer (n=14), autumn (n=31), and spring (n=10). Survival rates, in relation to predation, revealed MGW inhabiting native vegetation were nine times more likely to be predated than those inhabiting gorse. This result suggests native species such as mahoe (Melicytus ramiflorus), and tree ferns (Dicksonia fibrosa and Cyathea spp.) do not provide good protection to MGW from mammalian predators. Assessment of movement behaviour revealed MGW move less in autumn (~3m/48hrs) compared to summer (~10m/48hrs) and spring (~8m/48hrs), and most commonly follow a movement pattern consistent with random-walk. Movement behaviour was also found to be temperature dependant, with both male and female MGW moving significantly further in warmer weather (>13.5°C). Radiotracked MGW were found to take refuge above 2.5m in the canopy of native vegetation, whereas in gorse habitat, wētā were most commonly found taking refuge between 0.62 – 2.38m in the denser foliage of unbrowsed gorse bushes. Furthermore, no radiotracked wētā were observed with another individual in autumn, compared to eight and 26 observations in summer and spring.  In chapter 4, we attempted to identify potential mammalian predators of the MGW by analysing the stomach contents of ship rats (R. rattus; n=10), house mice (n=10), brushtail possums (n=5), and feral cats (Felis catus; n=2). Ship rats were identified as likely predators of MGW within the MGWSR. However, due to the limited number of stomachs and species analysed, further analysis is recommended. Collectively, these results provide an overview of the MGW reserve and population status, in addition to important ecological information that can be used to inform future management, monitoring, and translocation.</p>


2021 ◽  
Author(s):  
◽  
Hannah Stilborn

<p>Introduced mammalian pests, such as rats (Rattus spp.), house mice (Mus musculus), brushtail possums (Trichosurus vulpecula), and European hedgehogs (Erinaceus europaeus), have been implicated in the suppression or extinction of many endemic invertebrate species in New Zealand, including the large-bodied giant wētā (Anostostomatidae: Deinacrida). The Mahoenui giant wētā (MGW; D. mahoenui) is the only lowland giant wētā species still naturally present on the mainland of New Zealand, where the last remaining individuals of the original population are currently restricted to an 187ha mainland reserve (Mahoenui Giant Wētā Scientific Reserve; MGWSR) in Mahoenui, western King Country. Having sought refuge in the introduced woody shrub, gorse (Ulex europaeus), these wētā have survived in the presence of introduced mammalian predators for almost six decades. However, due to natural succession, the reserve is gradually reverting to native bush and wētā monitoring data shows potential signs of population decline. Concerns for the species survival have been raised as it is unknown how wētā will cope in an altered habitat alongside mammalian predators.  In chapter 2, we used 14-years’ of site-occupancy monitoring data to explore changes to the reserves’ gorse mosaic and MGW population. We additionally assessed the effect of abiotic covariates on MGW occupancy and detection probabilities in 2005 and 2018. Furthermore, we assessed mammalian pest population dynamics within the reserve over the past seven years. Significant changes to the reserve’s gorse mosaic were identified, whereby unbrowsed, tall bushes, which may provide less protection to wētā, are now dominant in 2018. Population trajectory analysis revealed the MGW population has decline since 2012. This result was consistent with naïve occupancy estimates and the increase in search time (0.3hrs/year) required to find wētā, suggesting the population is in a state of decline. Plot location was identified as an important covariate for predicting MGW occupancy in 2018, whereby plots in edge habitat, potentially being preferred or safer, had a higher occupancy probability. Mammalian pests (rats, house mice, brushtail possums, and European hedgehogs) appear to be present within the reserve year-round, populations peaking in summer and autumn.  In chapter 3, we used radiotelemetry to explore MGW survival rates, movement patterns, and diurnal refuge use in gorse and native vegetation during summer (n=14), autumn (n=31), and spring (n=10). Survival rates, in relation to predation, revealed MGW inhabiting native vegetation were nine times more likely to be predated than those inhabiting gorse. This result suggests native species such as mahoe (Melicytus ramiflorus), and tree ferns (Dicksonia fibrosa and Cyathea spp.) do not provide good protection to MGW from mammalian predators. Assessment of movement behaviour revealed MGW move less in autumn (~3m/48hrs) compared to summer (~10m/48hrs) and spring (~8m/48hrs), and most commonly follow a movement pattern consistent with random-walk. Movement behaviour was also found to be temperature dependant, with both male and female MGW moving significantly further in warmer weather (>13.5°C). Radiotracked MGW were found to take refuge above 2.5m in the canopy of native vegetation, whereas in gorse habitat, wētā were most commonly found taking refuge between 0.62 – 2.38m in the denser foliage of unbrowsed gorse bushes. Furthermore, no radiotracked wētā were observed with another individual in autumn, compared to eight and 26 observations in summer and spring.  In chapter 4, we attempted to identify potential mammalian predators of the MGW by analysing the stomach contents of ship rats (R. rattus; n=10), house mice (n=10), brushtail possums (n=5), and feral cats (Felis catus; n=2). Ship rats were identified as likely predators of MGW within the MGWSR. However, due to the limited number of stomachs and species analysed, further analysis is recommended. Collectively, these results provide an overview of the MGW reserve and population status, in addition to important ecological information that can be used to inform future management, monitoring, and translocation.</p>


Author(s):  
Erica L Larson ◽  
Emily E K Kopania ◽  
Kelsie E Hunnicutt ◽  
Dan Vanderpool ◽  
Sara Keeble ◽  
...  

Abstract Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of Meiotic Sex Chromosome Inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes awaits further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.


2021 ◽  
Author(s):  
Yalda Ashraf Kharaz ◽  
Katarzyna Goljanek Whysall ◽  
Gareth Nye ◽  
Jane Hurst ◽  
Anne Mcardle ◽  
...  

Aim: Cruciate ligaments (CLs) of the knee joint are commonly injured following trauma or ageing. MicroRNAs (miRs) are potential therapeutic targets in musculoskeletal disorders. This study aimed to 1) identify if wild-stock house (WSH) mice are an appropriate model to study age-related changes of the knee joint and 2) investigate expression of miRs in ageing murine CLs. Methods: Knee joints were collected from 6 and 24 months old C57BL/6 and WSH mice (Mus musculus domesticus) for histological analysis. RNA extraction and qPCR gene expression were performed on CLs in 6, 12, 24, and 30 month WSH old mice. Expression of miR targets in CLs was determined, followed by analysis of predicted mRNA target genes and Ingenuity Pathway Analysis. Results: Higher CL and knee OARSI histological scores were found in 24 month old WSH mice compared to 6 and 12 month old C57BL/6 and 6 month old WSH mice (p< 0.05). miR-29a and miR-34a were upregulated in 30 month-old WSH mice in comparison to 6, 12 and 24-month-old WSH mice (p<0.05). Ingenuity Pathway Analysis on miR-29a and 34a targets was associated with inflammation through interleukins, TGFβ and Notch genes and p53 signalling. Collagen type I alpha 1 chain (COL1A1) correlated negatively with both miR-29a (r= -0.35) and miR-34a (r= -0.33). Conclusion: The findings of this study support WSH house mice as an accelerated ageing model of the murine knee joint. This study also indicated that miR-29a and 34a may be important regulators of COL1A1 gene expression in murine CLs.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Raman Akinyanju Lawal ◽  
Uma P. Arora ◽  
Beth L. Dumont

Abstract Background Through human-aided dispersal over the last ~ 10,000 years, house mice (Mus musculus) have recently colonized diverse habitats across the globe, promoting the emergence of new traits that confer adaptive advantages in distinct environments. Despite their status as the premier mammalian model system, the impact of this demographic and selective history on the global patterning of disease-relevant trait variation in wild mouse populations is poorly understood. Results Here, we leveraged 154 whole-genome sequences from diverse wild house mouse populations to survey the geographic organization of functional variation and systematically identify signals of positive selection. We show that a significant proportion of wild mouse variation is private to single populations, including numerous predicted functional alleles. In addition, we report strong signals of positive selection at many genes associated with both complex and Mendelian diseases in humans. Notably, we detect a significant excess of selection signals at disease-associated genes relative to null expectations, pointing to the important role of adaptation in shaping the landscape of functional variation in wild mouse populations. We also uncover strong signals of selection at multiple genes involved in starch digestion, including Mgam and Amy1. We speculate that the successful emergence of the human-mouse commensalism may have been facilitated, in part, by dietary adaptations at these loci. Finally, our work uncovers multiple cryptic structural variants that manifest as putative signals of positive selection, highlighting an important and under-appreciated source of false-positive signals in genome-wide selection scans. Conclusions Overall, our findings highlight the role of adaptation in shaping wild mouse genetic variation at human disease-associated genes. Our work also highlights the biomedical relevance of wild mouse genetic diversity and underscores the potential for targeted sampling of mice from specific populations as a strategy for developing effective new mouse models of both rare and common human diseases.


Sign in / Sign up

Export Citation Format

Share Document