Joint influence of surface erosion and high-latitude ice-sheet extent on Asian dust cycle during the last glacial maximum

2019 ◽  
Vol 157 (5) ◽  
pp. 777-789 ◽  
Author(s):  
Xinzhou Li ◽  
Xiaodong Liu ◽  
Haibo Zhou

AbstractThe dust cycle plays an important role in the long-term evolution of the climate and environment. In this paper, an improved climate model including aerosol processes was used to carry out a set of sensitivity experiments and comparative analyses of the effects of high-latitude ice-sheet extent and abnormal dust erosion, as well as Earth’s orbital parameters and atmospheric greenhouse gas content, on dust activities during the last glacial maximum. The comparative analysis found that incorporating the abnormal surface erosion factor alone could increase dust emissions by 2.77-fold and 3.77-fold of the present-day global and Asian dust emissions, respectively. The high-latitude ice-sheet factor caused global dust emissions to increase by 1.25-fold that of the present day. Sensitivity experiments showed that increased surface erosion in Asia during the last glacial maximum made the greatest contribution to the increased dust emissions in Asia, followed by the high-latitude ice-sheet factor, while the contributions of the greenhouse gas content and orbital parameters were relatively weak. Strong dust emissions during the glacial period were therefore not only dependent on the development of the high-latitude ice sheets but were strongly associated with the underlying surface characteristics of local dust source regions.

2001 ◽  
Vol 31 (1-4) ◽  
pp. 407-425 ◽  
Author(s):  
Juha Pekka Lunkka ◽  
Matti Saarnisto ◽  
Valeri Gey ◽  
Igor Demidov ◽  
Vera Kiselova

2021 ◽  
Author(s):  
Lauren Gregoire ◽  
Niall Gandy ◽  
Lachlan Astfalck ◽  
Robin Smith ◽  
Ruza Ivanovic ◽  
...  

<p>Simulating the co-evolution of climate and ice-sheets during the Quaternary is key to understanding some of the major abrupt changes in climate, ice and sea level. Indeed, events such as the Meltwater pulse 1a rapid sea level rise and Heinrich, Dansgaard–Oeschger and the 8.2 kyr climatic events all involve the interplay between ice sheets, the atmosphere and the ocean. Unfortunately, it is challenging to simulate the coupled Climate-Ice sheet system because small biases, errors or uncertainties in parts of the models are strongly amplified by the powerful interactions between the atmosphere and ice (e.g. ice-albedo and height-mass balance feedbacks). This leads to inaccurate or even unrealistic simulations of ice sheet extent and surface climate. To overcome this issue we need some methods to effectively explore the uncertainty in the complex Climate-Ice sheet system and reduce model biases. Here we present our approach to produce ensemble of coupled Climate-Ice sheet simulations of the Last Glacial maximum that explore the uncertainties in climate and ice sheet processes.</p><p>We use the FAMOUS-ICE earth system model, which comprises a coarse-resolution and fast general circulation model coupled to the Glimmer-CISM ice sheet model. We prescribe sea surface temperature and sea ice concentrations in order to control and reduce biases in polar climate, which strongly affect the surface mass balance and simulated extent of the northern hemisphere ice sheets. We develop and apply a method to reconstruct and sample a range of realistic sea surface temperature and sea-ice concentration spatio-temporal field. These are created by merging information from PMIP3/4 climate simulations and proxy-data for sea surface temperatures at the Last Glacial Maximum with Bayes linear analysis. We then use these to generate ensembles of FAMOUS-ice simulations of the Last Glacial maximum following the PMIP4 protocol, with the Greenland and North American ice sheets interactively simulated. In addition to exploring a range of sea surface conditions, we also vary key parameters that control the surface mass balance and flow of ice sheets. We thus produce ensembles of simulations that will later be used to emulate ice sheet surface mass balance.  </p>


2022 ◽  
pp. 623-687
Author(s):  
Martin Siegert ◽  
Andrew S. Hein ◽  
Duanne A. White ◽  
Damian B. Gore ◽  
Laura De Santis ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 146 ◽  
Author(s):  
Xugeng Cheng ◽  
Xiaoning Xie ◽  
Zhengguo Shi ◽  
Xinzhou Li ◽  
Tianliang Zhao ◽  
...  

In this study, using the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for dust size distribution (CAM4-BAM), East Asian dust and its direct radiative feedbacks (DRF) during the Last Glacial Maximum are analyzed by intercomparing results between the experiments with (Active) and without (Passive) the DRF. This CAM4-BAM captures the expected characteristics that the dust aerosol optical depth and loading over East Asia during the Last Glacial Maximum (LGM) were significantly greater compared to the current climate. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust–radiation interaction can significantly reduce dust emissions and then weaken the whole dust cycle, including loading, transport, and dry and wet depositions over East Asia. Further analysis of the dust–radiation feedback shows that the DRF decreases surface sensible heat, mainly owing to the negative surface forcing induced by dust with a value of −11.8 W m−2. The decreased surface sensible heat weakens the turbulent energy within the planetary boundary layer and the surface wind speed, and then reduces the regional dust emissions. This process creates a negative DRF–emission feedback loop to affect the dust cycle during the LGM. Further analysis reveals that the dust emissions in the LGM over East Asia were more reduced, with amounts of −77.2 Tg season−1 by the negative DRF–emission feedback, compared to the current climate with −6.8 Tg season−1. The two ratios of this reduction to their emissions are close to −10.7% for the LGM and −7.5% for the current climate.


1997 ◽  
Vol 25 ◽  
pp. 145-152 ◽  
Author(s):  
Gilles Ramstein ◽  
Adeline Fabre ◽  
Sophie Pinot ◽  
Catherine Ritz ◽  
Sylvie Joussaume

In the framework of the Paleoclimate Modelling Intercomparison Project (PMIP), simulations of the Last Glacial Maximum (LGM) have- been performed. More than 10 different atmospheric general circulation models (AGCMs) have been used with the same boundary conditions: sea-surface temperatures prescribed by CLIMAP (1981), ice-sheet reconstruction provided by Peltier (1994), change in insolation, and reduced CO2 content. One of the major questions is to investigate whether the simulations of the LGM are in equilibrium with the prescribed ice-sheet reconstruction. To answer this question, we have used two different approaches. First, we analyze the results of a sel of LGM simulations performed with different versions of the Laboratoire de Meteorolo-gie Dynamique (LMD) AGCM and study the hydrologic and snow- budgets over the Laurcntide and Fennoscandian ice sheets. Second, we use the AGCM outputs to force an ice-sheet model in order to investigate its ability to maintain the ice sheets as reconstructed by CLIMAP (1981) or Peltier (1994).


Boreas ◽  
2009 ◽  
Vol 38 (3) ◽  
pp. 555-578 ◽  
Author(s):  
BETHAN J. DAVIES ◽  
DAVID H. ROBERTS ◽  
COLM Ó COFAIGH ◽  
DAVID R. BRIDGLAND ◽  
JAMES B. RIDING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document