scholarly journals A new characterization of Dedekind domains

1986 ◽  
Vol 28 (2) ◽  
pp. 237-239 ◽  
Author(s):  
D. D. Anderson ◽  
E. W. Johnson

Throughout this paper all rings are assumed commutative with identity. Among integral domains, Dedekind domains are characterized by the property that every ideal is a product of prime ideals. For a history and proof of this result the reader is referred to Cohen [2, pp. 31–32]. More generally, Mori [5] has shown that a ring has the property that every ideal is a product of prime ideals if and only if it is a finite direct product of Dedekind domains and special principal ideal rings (SPIRS). Rings with this property are called general Z.P.I.-rings.

1974 ◽  
Vol 26 (5) ◽  
pp. 1186-1191 ◽  
Author(s):  
H. H. Brungs

Let R be a right hereditary domain in which all right ideals are two-sided (i.e., R is right invariant). We show that R is the intersection of generalized discrete valuation rings and that every right ideal is the product of prime ideals. This class of rings seems comparable with (and contains) the class of commutative Dedekind domains, but the rings considered here are in general not maximal orders and not Dedekind rings in the terminology of Robson [9]. The left order of a right ideal of such a ring is a ring of the same kind and the class contains right principal ideal domains in which the maximal right ideals are two-sided [6].


1972 ◽  
Vol 24 (4) ◽  
pp. 566-572 ◽  
Author(s):  
R. E. Propes

The purpose of this paper is to characterize the radical ideals of principal ideal domains and Dedekind domains. We show that if T is a radical class and R is a PID, then T(R) is an intersection of prime ideals of R. More specifically, ifthen T(R) = (p1p2 … pk), where p1, p2, … , pk are distinct primes, and where (p1p2 … Pk) denotes the principal ideal of R generated by p1p2 … pk. We also characterize the radical ideals of commutative principal ideal rings. For radical ideals of Dedekind domains we obtain a characterization similar to the one given for PID's.


2011 ◽  
Vol 10 (06) ◽  
pp. 1291-1299 ◽  
Author(s):  
EVRIM AKALAN ◽  
GARY F. BIRKENMEIER ◽  
ADNAN TERCAN

In this paper, we characterize [Formula: see text]-extending (Goldie extending) modules over Dedekind domains and we use the [Formula: see text]-extending condition to characterize the modules over a principal ideal domain whose pure submodules are direct summands. Moreover, we show that if R is a principal ideal domain, then the class of [Formula: see text]-extending modules is closed under direct summands and that if R is a Dedekind domain, then the class of [Formula: see text]-extending torsion modules is closed under finite direct sums.


2019 ◽  
Vol 19 (07) ◽  
pp. 2050122 ◽  
Author(s):  
Songül Esin ◽  
Müge Kanuni ◽  
Ayten Koç ◽  
Katherine Radler ◽  
Kulumani M. Rangaswamy

Prüfer domains and subclasses of integral domains such as Dedekind domains admit characterizations by means of the properties of their ideal lattices. Interestingly, a Leavitt path algebra [Formula: see text], in spite of being noncommutative and possessing plenty of zero divisors, seems to have its ideal lattices possess the characterizing properties of these special domains. In [The multiplicative ideal theory of Leavitt path algebras, J. Algebra 487 (2017) 173–199], it was shown that the ideals of [Formula: see text] satisfy the distributive law, a property of Prüfer domains and that [Formula: see text] is a multiplication ring, a property of Dedekind domains. In this paper, we first show that [Formula: see text] satisfies two more characterizing properties of Prüfer domains which are the ideal versions of two theorems in Elementary Number Theory, namely, for positive integers [Formula: see text], [Formula: see text] and [Formula: see text]. We also show that [Formula: see text] satisfies a characterizing property of almost Dedekind domains in terms of the ideals whose radicals are prime ideals. Finally, we give necessary and sufficient conditions under which [Formula: see text] satisfies another important characterizing property of almost Dedekind domains, namely, the cancellative property of its nonzero ideals.


2011 ◽  
Vol 10 (04) ◽  
pp. 701-710
Author(s):  
A. MIMOUNI

This paper studies the integral and complete integral closures of an ideal in an integral domain. By definition, the integral closure of an ideal I of a domain R is the ideal given by I′ ≔ {x ∈ R | x satisfies an equation of the form xr + a1xr-1 + ⋯ + ar = 0, where ai ∈ Ii for each i ∈ {1, …, r}}, and the complete integral closure of I is the ideal Ī ≔ {x ∈ R | there exists 0 ≠ = c ∈ R such that cxn ∈ In for all n ≥ 1}. An ideal I is said to be integrally closed or complete (respectively, completely integrally closed) if I = I′ (respectively, I = Ī). We investigate the integral and complete integral closures of ideals in many different classes of integral domains and we give a new characterization of almost Dedekind domains via the complete integral closure of ideals.


1980 ◽  
Vol 23 (4) ◽  
pp. 457-459 ◽  
Author(s):  
D. D. Anderson

The classical rings of number theory, Dedekind domains, are characterized by the property that every ideal is a product of prime ideals. More generally, a commutative ring R with identity has the property that every ideal is a product of prime ideals if and only if R is a finite direct sum of Dedekind domains and special principal ideal rings. These rings, called general Z.P.I. rings, are also characterized by the property that every (prime) ideal is finitely generated and locally principal.


1986 ◽  
Vol 29 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David E. Dobbs

AbstractLet R be an integral domain. It is proved that if a nonzero ideal I of R can be generated by n < ∞ elements, then I is invertible (i.e., flat) if and only if I(∩ Rai) = ∩ Iai for all { a1, . . ., a n﹜ ⊂ I. The article's main focus is on torsion-free R-modules E which are LCM-stable in the sense that E(Ra ∩ Rb) = Ea ∩ Eb for all a, b ∈ R. By means of linear relations, LCM-stableness is shown to be equivalent to a weak aspect of flatness. Consequently, if each finitely generated ideal of R may be 2-generated, then each LCM-stable R-module is flat. Finally, LCM-stableness of maximal ideals serves to characterize Prüfer domains, Dedekind domains, principal ideal domains, and Bézout domains amongst suitably larger classes of integral domains.


1988 ◽  
Vol 37 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Valentina Barucci ◽  
David E. Dobbs ◽  
S.B. Mulay

This paper characterises the integral domains R with the property that R/P is integrally closed for each prime ideal P of R. It is shown that Dedekind domains are the only Noetherian domains with this property. On the other hand, each integrally closed going-down domain has this property. Related properties and examples are also studied.


10.37236/6676 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Richard H. Hammack ◽  
Cristina Mullican

We connect two seemingly unrelated problems in graph theory.Any graph $G$ has a neighborhood multiset $\mathscr{N}(G)= \{N(x) \mid x\in V(G)\}$ whose elements are precisely the open vertex-neighborhoods of $G$. In general there exist non-isomorphic graphs $G$ and $H$ for which $\mathscr{N}(G)=\mathscr{N}(H)$. The neighborhood reconstruction problem asks the conditions under which $G$ is uniquely reconstructible from its neighborhood multiset, that is, the conditions under which $\mathscr{N}(G)=\mathscr{N}(H)$ implies $G\cong H$. Such a graph is said to be neighborhood-reconstructible.The cancellation problem for the direct product of graphs seeks the conditions under which $G\times K\cong H\times K$ implies $G\cong H$. Lovász proved that this is indeed the case if $K$ is not bipartite. A second instance of the cancellation problem asks for conditions on $G$ that assure $G\times K\cong H\times K$ implies $G\cong H$ for any bipartite~$K$ with $E(K)\neq \emptyset$. A graph $G$ for which this is true is called a cancellation graph.We prove that the neighborhood-reconstructible graphs are precisely the cancellation graphs. We also present some new results on cancellation graphs, which have corresponding implications for neighborhood reconstruction. We are particularly interested in the (yet-unsolved) problem of finding a simple structural characterization of cancellation graphs (equivalently, neighborhood-reconstructible graphs).


Sign in / Sign up

Export Citation Format

Share Document