INTEGRAL AND COMPLETE INTEGRAL CLOSURES OF IDEALS IN INTEGRAL DOMAINS

2011 ◽  
Vol 10 (04) ◽  
pp. 701-710
Author(s):  
A. MIMOUNI

This paper studies the integral and complete integral closures of an ideal in an integral domain. By definition, the integral closure of an ideal I of a domain R is the ideal given by I′ ≔ {x ∈ R | x satisfies an equation of the form xr + a1xr-1 + ⋯ + ar = 0, where ai ∈ Ii for each i ∈ {1, …, r}}, and the complete integral closure of I is the ideal Ī ≔ {x ∈ R | there exists 0 ≠ = c ∈ R such that cxn ∈ In for all n ≥ 1}. An ideal I is said to be integrally closed or complete (respectively, completely integrally closed) if I = I′ (respectively, I = Ī). We investigate the integral and complete integral closures of ideals in many different classes of integral domains and we give a new characterization of almost Dedekind domains via the complete integral closure of ideals.

2020 ◽  
Vol 27 (02) ◽  
pp. 287-298
Author(s):  
Gyu Whan Chang ◽  
HwanKoo Kim

Let D be an integral domain with quotient field K, [Formula: see text] be the integral closure of D in K, and D[w] be the w-integral closure of D in K; so [Formula: see text], and equality holds when D is Noetherian or dim(D) = 1. The Mori–Nagata theorem states that if D is Noetherian, then [Formula: see text] is a Krull domain; it has also been investigated when [Formula: see text] is a Dedekind domain. We study integral domains D such that D[w] is a Krull domain. We also provide an example of an integral domain D such that [Formula: see text], t-dim(D) = 1, [Formula: see text] is a Prüfer v-multiplication domain with t-dim([Formula: see text]) = 2, and D[w] is a UFD.


1969 ◽  
Vol 9 (3-4) ◽  
pp. 310-314 ◽  
Author(s):  
William Heinzer

This paper continues an investigation of the complete integral closure of an integral domain which was begun in [2]. We recall that if D is an integral domain with quotient field K then an element x of K is said to be almost integral over D if there exists a nonzero element y of D such that yxn is an element of D for each positive integer n. The set D* of elements of K almost integral over D is called the complete integral closure of D and D is said to be completely integrally closed if D* = D.


1988 ◽  
Vol 37 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Valentina Barucci ◽  
David E. Dobbs ◽  
S.B. Mulay

This paper characterises the integral domains R with the property that R/P is integrally closed for each prime ideal P of R. It is shown that Dedekind domains are the only Noetherian domains with this property. On the other hand, each integrally closed going-down domain has this property. Related properties and examples are also studied.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950018 ◽  
Author(s):  
Gyu Whan Chang ◽  
Haleh Hamdi ◽  
Parviz Sahandi

Let [Formula: see text] be a nonzero commutative cancellative monoid (written additively), [Formula: see text] be a [Formula: see text]-graded integral domain with [Formula: see text] for all [Formula: see text], and [Formula: see text]. In this paper, we study graded integral domains in which each nonzero homogeneous [Formula: see text]-ideal (respectively, homogeneous [Formula: see text]-ideal) is divisorial. Among other things, we show that if [Formula: see text] is integrally closed, then [Formula: see text] is a P[Formula: see text]MD in which each nonzero homogeneous [Formula: see text]-ideal is divisorial if and only if each nonzero ideal of [Formula: see text] is divisorial, if and only if each nonzero homogeneous [Formula: see text]-ideal of [Formula: see text] is divisorial.


1960 ◽  
Vol 12 ◽  
pp. 107-125 ◽  
Author(s):  
D. G. Higman

We study representations of o-orders, that is, of o-regular -algebras, in the case that o is a Dedekind domain. Our main concern is with those -modules, called -representation modules, which are regular as o-modules. For any -module M we denote by D(M) the ideal consisting of the elements x ∈ o such that x.Ext1(M, N) = 0 for all -modules N, where Ext = Ext(,0) is the relative functor of Hochschild (5). To compute D(M) we need the small amount of homological algebra presented in § 1. In § 2 we show that the -representation modules with rational hulls isomorphic to direct sums of right ideal components of the rational hull A of , called principal-modules, are characterized by the property that D(M) ≠ 0. The (, o)-projective -modules are those with D(M) = 0. We observe that D(M) divides the ideal I() of (2) for every M , and give another proof of the fact that I() ≠ 0 if and only if A is separable. Up to this point, o can be taken to be an arbitrary integral domain.


Author(s):  
Robert Gilmer

AbstractSuppose D is an integral domain with quotient field K and that L is an extension field of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by Gilmer and Heinzer in 1965.


2016 ◽  
Vol 15 (06) ◽  
pp. 1650022 ◽  
Author(s):  
M. Ben Nasr

Let [Formula: see text] be an integral domain with only finitely many overrings, equivalently, a domain such that its integral closure [Formula: see text] is a Prüfer domain with finite spectrum and there are only finitely many rings between [Formula: see text] and [Formula: see text]. Jaballah solved the problem of counting the overrings in the case [Formula: see text] but left the general case as an open problem [A. Jaballah, The number of overrings of an integrally closed domain, Expo. Math. 23 (2005) 353–360, Problem 3.4]. The purpose of this paper is to provide a solution to that problem.


2016 ◽  
Vol 95 (1) ◽  
pp. 14-21 ◽  
Author(s):  
MABROUK BEN NASR ◽  
NABIL ZEIDI

Let $R\subset S$ be an extension of integral domains, with $R^{\ast }$ the integral closure of $R$ in $S$. We study the set of intermediate rings between $R$ and $S$. We establish several necessary and sufficient conditions for which every ring contained between $R$ and $S$ compares with $R^{\ast }$ under inclusion. This answers a key question that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J. Math. Kyoto Univ.7 (1967), 133–150].


2003 ◽  
Vol 46 (1) ◽  
pp. 3-13 ◽  
Author(s):  
D. D. Anderson ◽  
Tiberiu Dumitrescu

AbstractAn integral domain D with identity is condensed (resp., strongly condensed) if for each pair of ideals I, J of D, IJ = {ij ; i ∈ I; j ∈ J} (resp., IJ = iJ for some i ∈ I or IJ = Ij for some j ∈ J). We show that for a Noetherian domain D, D is condensed if and only if Pic(D) = 0 and D is locally condensed, while a local domain is strongly condensed if and only if it has the two-generator property. An integrally closed domain D is strongly condensed if and only if D is a Bézout generalized Dedekind domain with at most one maximal ideal of height greater than one. We give a number of equivalencies for a local domain with finite integral closure to be strongly condensed. Finally, we show that for a field extension k ⊆ K, the domain D = k + XK[[X]] is condensed if and only if [K : k] ≤ 2 or [K : k] = 3 and each degree-two polynomial in k[X] splits over k, while D is strongly condensed if and only if [K : k] ≤ 2.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650091 ◽  
Author(s):  
Sudesh K. Khanduja ◽  
Bablesh Jhorar

Let [Formula: see text] be an integrally closed domain with quotient field [Formula: see text] and [Formula: see text] be an element of an integral domain containing [Formula: see text] with [Formula: see text] integral over [Formula: see text]. Let [Formula: see text] be the minimal polynomial of [Formula: see text] over [Formula: see text] and [Formula: see text] be a maximal ideal of [Formula: see text]. Kummer proved that if [Formula: see text] is an integrally closed domain, then the maximal ideals of [Formula: see text] which lie over [Formula: see text] can be explicitly determined from the irreducible factors of [Formula: see text] modulo [Formula: see text]. In 1878, Dedekind gave a criterion known as Dedekind Criterion to be satisfied by [Formula: see text] for [Formula: see text] to be integrally closed in case [Formula: see text] is the localization [Formula: see text] of [Formula: see text] at a nonzero prime ideal [Formula: see text] of [Formula: see text]. Indeed he proved that if [Formula: see text] is the factorization of [Formula: see text] into irreducible polynomials modulo [Formula: see text] with [Formula: see text] monic, then [Formula: see text] is integrally closed if and only if for each [Formula: see text], either [Formula: see text] or [Formula: see text] does not divide [Formula: see text] modulo [Formula: see text], where [Formula: see text]. In 2006, a similar necessary and sufficient condition was given by Ershov for [Formula: see text] to be integrally closed when [Formula: see text] is the valuation ring of a Krull valuation of arbitrary rank (see [Comm. Algebra. 38 (2010) 684–696]). In this paper, we deal with the above problem for more general rings besides giving some equivalent versions of Dedekind Criterion. The well-known result of Uchida in this direction proved for Dedekind domains has also been deduced (cf. [Osaka J. Math. 14 (1977) 155–157]).


Sign in / Sign up

Export Citation Format

Share Document