scholarly journals On approximating Lebesgue integrals by Riemann sums

1991 ◽  
Vol 33 (2) ◽  
pp. 129-134
Author(s):  
Szilárd GY. Révész ◽  
Imre Z. Ruzsa

If f is a real function, periodic with period 1, we defineIn the whole paper we write ∫ for , mE for the Lebesgue measure of E ∩ [0,1], where E ⊂ ℝ is any measurable set of period 1, and we also use XE for the characteristic function of the set E. Consistent with this, the meaning of ℒp is ℒp [0, 1]. For all real xwe haveif f is Riemann-integrable on [0, 1]. However,∫ f exists for all f ∈ ℒ1 and one would wish to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for f ∈ ℒp in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for the characteristic function of an open set, and so, to get a reasonable extension, it is natural to weaken (2) towhere S ⊂ ℕ is some “good” increasing subsequence of ℕ. Naturally, for different function classes ℱ ⊂ ℒ1 we get different meanings of being good. That is, we introduce the class of ℱ-good sequences as

1968 ◽  
Vol 8 (3) ◽  
pp. 385-396 ◽  
Author(s):  
B. D. Craven

In a previous paper [1], Green's theorem for line integrals in the plane was proved, for Riemann integration, assuming the integrability of Qx−Py, where P(x, y) and Q(x, y) are the functions involved, but not the integrability of the individual partial derivatives Qx and Py. In the present paper, this result is extended to a proof of the Gauss-Green theorem for p-space (p ≥ 2), for Lebesgue integration, under analogous hypotheses. The theorem is proved in the form where Ω is a bounded open set in Rp (p-space), with boundary Ω; g(x) =(g(x1)…, g(xp)) is a p-vector valued function of x = (x1,…,xp), continuous in the closure of Ω; μv,(x) is p-dimensional Lebesgue measure; v(x) = (v1(x),…, vp(x)) and Φ(x) are suitably defined unit exterior normal and surface area on the ‘surface’ ∂Ω and g(x) · v(x) denotes inner product of p-vectors.


1998 ◽  
Vol 40 (3) ◽  
pp. 393-425 ◽  
Author(s):  
J. Schoissengeier

In the following let Ω be the set of irrational numbers in the interval [0,1] and let λ be Lebesgue measure restricted to Ω. For any real number x, let {x} = x - [x] be the fractional part of x. Let N be anatural number and let α e Ω. Thenis known as the discrepancy of the sequence (nα)n>1 modulo 1; here c[x, y) denotes the characteristic function of the interval [x, y).


1972 ◽  
Vol 13 (2) ◽  
pp. 219-223
Author(s):  
G. O. Okikiolu

We denote by R the set of real numbers, and by Rn, n ≧ 2, the Euclidean space of dimension n. Given any subset E of Rn, n ≧ 1, we denote the characteristic function of E by xE, so that XE(x) = 0 if x ∈ E; and XE(X) = 0 if x ∈ Rn/E.The space L(Rn) Lp consists of those measurable functions f on Rn such that is finite. Also, L∞ represents the space of essentially bounded measurable functions with ║f║>0; m({x: |f(x)| > x}) = O}, where m represents the Lebesgue measure on Rn The numbers p and p′ will be connected by l/p+ l/p′= 1.


Author(s):  
E. F. Collingwood ◽  
A. J. Lohwater

Let f (z) be meromorphic and non-rational in the domain |z| < R ≤ ∞, and let a be an arbitrary complex number, which may be infinite. The deficiency δ(a) of the value a is defined bywhere m(r, a), N(r, a) and T(r) are defined as usual (cf. (10), pp. 156 ff.). For the class of functions considered in this paper the characteristic function T(r) is unbounded, and this will be assumed throughout. The upper (or Valiron) deficiency (16) of the value a is denned byfrom which it follows that 0 ≤ δ(a) ≤ Δ(a) ≤ 1. A value a for which Δ(a) > 0 is called exceptional or deficient, and a value for which Δ(a) = 0 is called normal. We shall denote by G[a, σ] the open set of all values z in | z | < R for which | f(z) – a | < σ, where σ is a given positive number; we shall say that a component Gn[a, σ] of G[a, a] is bounded if the closure G¯n[a, σ] is contained in | z | < R, otherwise Gn[a, σ] will be called unbounded. In the case a = ∞, it is natural to define Gn[∞, σ] as the set of all z for which | f(z) | > 1/σ.


1979 ◽  
Vol 22 (2) ◽  
pp. 145-160 ◽  
Author(s):  
R. C. Baker

Let B be a measurable set of real numbers in (0,1) of Lebesgue measure |B| and let x1, …, xn be real. Thendenotes the number of j (1 ≦j≦n) for which the fractional part {xj}∈B. The discrepancy of x1, …, xn iswhere the supremum is taken over all intervals I in [0,1].


1989 ◽  
Vol 105 (2) ◽  
pp. 377-380 ◽  
Author(s):  
Steven N. Evans

In a recent paper Mountford [4] showed, using an ingenious probabilistic argument, that if X is a real-valued stable process with index α < 1 and f: [0, ∞) → ℝ is a non-constant continuous function, thenwhere we use the notation |A| for the Lebesgue measure of a Lebesgue measurable set A ⊂ ℝ. The argument in [4] appears to make strong use of the strict scaling properties of X and the ‘intermediate value’ property of f.


2020 ◽  
Vol 70 (2) ◽  
pp. 305-318
Author(s):  
Anna Kamińska ◽  
Katarzyna Nowakowska ◽  
Małgorzata Turowska

Abstract In the paper some properties of sets of points of approximate continuity and ϱ-upper continuity are presented. We will show that for every Lebesgue measurable set E ⊂ ℝ there exists a function f : ℝ → ℝ which is approximately (ϱ-upper) continuous exactly at points from E. We also study properties of sets of points at which real function has Denjoy property. Some other related topics are discussed.


Author(s):  
T. M. Cherry

Letbe a system of differential equations of Hamiltonian form, the characteristic function H being independent of t and expansible in a convergent series of powers of x1, … xn, y1, … yn in which the terms of lowest degree are


1968 ◽  
Vol 20 ◽  
pp. 1365-1382 ◽  
Author(s):  
Bui An Ton

Let G be a bounded open set of Rn with a smooth boundary ∂G. We consider the following elliptic boundary-value problem:where A and Bj are, respectively singular integro-differential operators on G and on ∂G, of orders 2m and rj with rj < 2m; Ck are boundary differential operators, and Ljk are linear operators, bounded in a sense to be specified.


1966 ◽  
Vol 18 ◽  
pp. 1105-1112 ◽  
Author(s):  
R. A. Adams

Let Ω be a bounded open set in Euclidean n-space, En. Let α = (α1, … , an) be an n-tuple of non-negative integers;and denote by Qm the set ﹛α| 0 ⩽ |α| ⩽ m}. Denote by x = (x1, … , xn) a typical point in En and putIn this paper we establish, under certain circumstances, the existence of weak and classical solutions of the quasi-linear Dirichlet problem1


Sign in / Sign up

Export Citation Format

Share Document