On sets of points of approximate continuity and ϱ-upper continuity

2020 ◽  
Vol 70 (2) ◽  
pp. 305-318
Author(s):  
Anna Kamińska ◽  
Katarzyna Nowakowska ◽  
Małgorzata Turowska

Abstract In the paper some properties of sets of points of approximate continuity and ϱ-upper continuity are presented. We will show that for every Lebesgue measurable set E ⊂ ℝ there exists a function f : ℝ → ℝ which is approximately (ϱ-upper) continuous exactly at points from E. We also study properties of sets of points at which real function has Denjoy property. Some other related topics are discussed.

1959 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
J. H. Michael ◽  
B. C. Rennie

SummaryThis paper investigates the existence and equality of the double and repeated integrals of a real function on a plane set. The main result (Theorem 2) is that if a function on a plane Lebesgue measurable set is continuous in one variable and measurable in the other then it is measurable in the plane.


1991 ◽  
Vol 33 (2) ◽  
pp. 129-134
Author(s):  
Szilárd GY. Révész ◽  
Imre Z. Ruzsa

If f is a real function, periodic with period 1, we defineIn the whole paper we write ∫ for , mE for the Lebesgue measure of E ∩ [0,1], where E ⊂ ℝ is any measurable set of period 1, and we also use XE for the characteristic function of the set E. Consistent with this, the meaning of ℒp is ℒp [0, 1]. For all real xwe haveif f is Riemann-integrable on [0, 1]. However,∫ f exists for all f ∈ ℒ1 and one would wish to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for f ∈ ℒp in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for the characteristic function of an open set, and so, to get a reasonable extension, it is natural to weaken (2) towhere S ⊂ ℕ is some “good” increasing subsequence of ℕ. Naturally, for different function classes ℱ ⊂ ℒ1 we get different meanings of being good. That is, we introduce the class of ℱ-good sequences as


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Magdalena Górajska

AbstractThe paper presents a new type of density topology on the real line generated by the pointwise convergence, similarly to the classical density topology which is generated by the convergence in measure. Among other things, this paper demonstrates that the set of pointwise density points of a Lebesgue measurable set does not need to be measurable and the set of pointwise density points of a set having the Baire property does not need to have the Baire property. However, the set of pointwise density points of any Borel set is Lebesgue measurable.


2015 ◽  
Vol 159 (2) ◽  
pp. 253-273 ◽  
Author(s):  
BLAGOVEST SENDOV ◽  
HRISTO SENDOV

AbstractFor every complex polynomial p(z), closed point sets are defined, called loci of p(z). A closed set Ω ⊆ ${\mathbb C}$* is a locus of p(z) if it contains a zero of any of its apolar polynomials and is the smallest such set with respect to inclusion. Using the notion locus, some classical theorems in the geometry of polynomials can be refined. We show that each locus is a Lebesgue measurable set and investigate its intriguing connections with the higher-order polar derivatives of p.


1988 ◽  
Vol 38 (3) ◽  
pp. 413-420 ◽  
Author(s):  
W. McLean ◽  
D. Elliott

The p-norm of the Hilbert transform is the same as the p-norm of its truncation to any Lebesgue measurable set with strictly positive measure. This fact follows from two symmetry properties, the joint presence of which is essentially unique to the Hilbert transform. Our result applies, in particular, to the finite Hilbert transform taken over (−1, 1), and to the one-sided Hilbert transform taken over (0, ∞). A related weaker property holds for integral operators with Hardy kernels.


2017 ◽  
Vol 67 (6) ◽  
Author(s):  
Marianna Tavernise ◽  
Alessandro Trombetta ◽  
Giulio Trombetta

AbstractLet Ω be a Lebesgue-measurable set in ℝ


1969 ◽  
Vol 65 (2) ◽  
pp. 437-438
Author(s):  
Roy O. Davies

Goldman (4) conjectured that if Z is a linear set having the property that for every (Lebesgue) measurable real function f the set f−1[Z] is a measurable set, then Z must be a Borel set. I pointed out (2) that any analytic non-Borel set provides a counterexample, and Eggleston(3) showed that a set can have the property but be neither analytic nor even an analytic complement, for example, any Luzin set. As Eggleston mentions, in the construction of Luzin sets the continuum hypothesis is assumed (compare Sierpiński(6), Chapter II), and the question arises whether it can be dispensed with in his theorem. We shall show that a non-analytic set having Goldman's property can be constructed with the help of the axiom of choice alone, without the continuum hypothesis; the problem for analytic complements remains open. We shall also generalize one of Eggleston's intermediate results.


Author(s):  
S. Vessella

Consider an open bounded connected set Ω in Rn and a Lebesgue measurable set E ⊂⊂ Ω of positive measure. Let u be a solution of the strictly elliptic equation Di (aij Dj u) = 0 in Ω, where aij ∈ C0, 1 (Ω̄) and {aij} is a symmetric matrix. Assume that |u| ≤ ε in E. We quantify the propagation of smallness of u in Ω.


1989 ◽  
Vol 105 (2) ◽  
pp. 377-380 ◽  
Author(s):  
Steven N. Evans

In a recent paper Mountford [4] showed, using an ingenious probabilistic argument, that if X is a real-valued stable process with index α < 1 and f: [0, ∞) → ℝ is a non-constant continuous function, thenwhere we use the notation |A| for the Lebesgue measure of a Lebesgue measurable set A ⊂ ℝ. The argument in [4] appears to make strong use of the strict scaling properties of X and the ‘intermediate value’ property of f.


Sign in / Sign up

Export Citation Format

Share Document