On Integrals developable about a Singular Point of a Hamiltonian System of Differential Equations

Author(s):  
T. M. Cherry

Letbe a system of differential equations of Hamiltonian form, the characteristic function H being independent of t and expansible in a convergent series of powers of x1, … xn, y1, … yn in which the terms of lowest degree are

Author(s):  
T. M. Cherry

This paper completes an investigation, of which the first part has already been published, into the integrals of a Hamiltonian system which are formally developable about a singular point of the system. Letbe a system of differential equations of which the origin is a singular point of the first type, i.e. a point at which H is developable in a convergent Taylor series, but at which its first derivatives all vanish. We suppose that H does not involve t, and we consider only integrals not involving t. Let the exponents of this singular point be ± λ1, ± λ2,…±λn. In Part I, I considered the case in which the constants λ1,…λn are connected by no relation of commensurability, i.e. a relation of the formwhere A1…An are integers (positive, negative or zero) not all zero, and showed that the equations (1) possess n, and only n, integrals not involving t which are formally developable as power series in the xk, yk. In this paper I consider the case in which λ1 … λn are connected by one or more relations of commensur-ability. Suppose that there are p, and only p, such relations linearly independent (p > 0): it will be shown that the equations (1) possess (n − p) independent integrals not involving t, formally developable about the origin and independent of H.


1924 ◽  
Vol 22 (3) ◽  
pp. 273-281 ◽  
Author(s):  
T. M. Cherry

Letbe a system of differential equations in which X1, … Xn are analytic functions independent of t, expansible in convergent series of powers of x1, … xn. Suppose further that not all the functions X1, … Xn vanish when x1 = … = xn = 0. It will be shown in §§ 1–3 that these equations possess (n — 1) independent integrals independent of t, expansible in convergent series of powers of x1, … xn; i.e. functionssuch thatidentically. In § 4 it is shown how the series for ϕ1,…ϕn−1 may be most directly constructed, and in § 5 is briefly considered the corresponding problem when the origin is a singular point of the equations, i.e. when the expansions of X1,…Xn all begin with terms of the first or higher degrees.


1965 ◽  
Vol 8 (4) ◽  
pp. 453-457
Author(s):  
T. A. Burton

We consider a system of differential equations1where 0 = (o, o) is an isolated singular point. Thus, there exists B > o such that S(0, B) contains only one singular point. Here, S(0, B) denotes a sphere centered at 0 with radius B. We shall denote the boundary of S(0, B) by ∂ S(0, B).


1965 ◽  
Vol 8 (5) ◽  
pp. 647-658
Author(s):  
T. A. Burton

We consider a system of differential equations of second order given by1(' = d/dt) where P and Q have continuous first partial derivatives with respect to x and y in some open and simply connected set R containing O = (0, 0) which we assume to be the only singular point in R. In fact, let R be the whole plane; for if not then the following discussion can be modified.


Author(s):  
Hwa-Chung Lee

I. Introduction.—Consider a Hamiltonian system of differential equationswhere H is a function of the 2n variables qi and pi involving in general also the time t. For each given Hamiltonian function H the system (1.1) possesses infinitely many absolute and relative integral invariants of every order r = 1,…, 2n, which can all be written out when (1.1) is integrated. Our interest now is not in these integral invariants, which are possessed by one Hamiltonian system, but in those which are possessed by all Hamiltonian systems. Such an integral invariant, which is independent of the Hamiltonian H, is said to be universal.


1982 ◽  
Vol 25 (2) ◽  
pp. 183-207 ◽  
Author(s):  
W. Balser

Let a meromorphic differential equationbe given, where r is an integer, and the series converges for |z| sufficiently large. Then it is well known that (0.1) is formally satisfied by an expressionwhere F( z) is a formal power series in z–1 times an integer power of z, and F( z) has an inverse of the same kind, L is a constant matrix, andis a diagonal matrix of polynomials qj( z) in a root of z, 1≦ j≦ n. If, for example, all the polynomials in Q( z) are equal, then F( z) can be seen to be a convergent series (see Section 1), whereas if not, then generally the coefficients in F( z) grow so rapidly that F( z) diverges for every (finite) z.


1965 ◽  
Vol 61 (4) ◽  
pp. 889-894 ◽  
Author(s):  
R. A. Smith

For an n-vector x = (xi) and n × n matrix A = (aij) with complex elements, let |x|2 = Σi|xi|2,|A|2 = ΣiΣj|aij|2. Also, M(A), m(A) denoteℜλ1,ℜλn, respectively, where λ1,…,λA are the eigenvalues of A arranged so that ℜλ1 ≥ … ≥ ℜλn. Throughout this paper A(t) denotes a matrix whose elements aij(t) are complex valued Lebesgue integrable functions of t in (0, T) for all T > 0. Then M(A(t)), m(A(t)) are also Lebesgue integrable in (0, T) for all T > 0. The characteristic exponent μ of a non-zero solution x(t) of the n × n system of differential equationscan be defined, following Perron ((12)), aswhere ℒ denotes lim sup as t → + ∞. When |A(t)| is bounded in (0,∞), μ is finite; in other cases it could be ± ∞.


In the following pages it is proposed to develop ab initio a theory of periodic solutions of Hamiltonian systems of differential equations. Such solutions are of theoretical importance for the following reason: that whereas the attempt to obtain, for a real Hamiltonian system, solutions valid for all real values of the independent variable leads in general to divergent series, for certain solutions which are formally periodic the series can be proved convergent. In the words of Poincare, “ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire, la seule breche paroù nous puissions essayer de pénétrer dans une place jusqu'ici reputee inabordable. The existing theory of periodic solutions of differential equations was developed by Poincare mainly with reference to the equations of Celestial Mechanics. With a suitable choice of co-ordinates these are of the Hamiltonian form.


Sign in / Sign up

Export Citation Format

Share Document