scholarly journals QUASI-DETERMINANTS AND q-COMMUTING MINORS

2010 ◽  
Vol 52 (3) ◽  
pp. 663-675
Author(s):  
AARON LAUVE

AbstractWe present two new proofs of the q-commuting property holding among certain pairs of quantum minors of a q-generic matrix. The first uses elementary quasi-determinantal arithmetic; the second involves paths in a directed graph. Together, they indicate a means to build the multi-homogeneous coordinate rings of flag varieties in other non-commutative settings.

1985 ◽  
Vol 37 (6) ◽  
pp. 1149-1162 ◽  
Author(s):  
Craig Huneke ◽  
Matthew Miller

Let R = k[X1, …, Xn] with k a field, and let I ⊂ R be a homogeneous ideal. The algebra R/I is said to have a pure resolution if its homogeneous minimal resolution has the formSome of the known examples of pure resolutions include the coordinate rings of: the tangent cone of a minimally elliptic singularity or a rational surface singularity [15], a variety defined by generic maximal Pfaffians [2], a variety defined by maximal minors of a generic matrix [3], a variety defined by the submaximal minors of a generic square matrix [6], and certain of the Segre-Veronese varieties [1].If I is in addition Cohen-Macaulay, then Herzog and Kühl have shown that the betti numbers bi are completely determined by the twists di.


2019 ◽  
Vol 16 (2) ◽  
pp. 1
Author(s):  
Shamsatun Nahar Ahmad ◽  
Nor’Aini Aris ◽  
Azlina Jumadi

Concepts from algebraic geometry such as cones and fans are related to toric varieties and can be applied to determine the convex polytopes and homogeneous coordinate rings of multivariate polynomial systems. The homogeneous coordinates of a system in its projective vector space can be associated with the entries of the resultant matrix of the system under consideration. This paper presents some conditions for the homogeneous coordinates of a certain system of bivariate polynomials through the construction and implementation of the Sylvester-Bèzout hybrid resultant matrix formulation. This basis of the implementation of the Bèzout block applies a combinatorial approach on a set of linear inequalities, named 5-rule. The inequalities involved the set of exponent vectors of the monomials of the system and the entries of the matrix are determined from the coefficients of facets variable known as brackets. The approach can determine the homogeneous coordinates of the given system and the entries of the Bèzout block. Conditions for determining the homogeneous coordinates are also given and proven.


2021 ◽  
Vol 384 ◽  
pp. 107695
Author(s):  
Madeline Brandt ◽  
Christopher Eur ◽  
Leon Zhang
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Alex Chirvasitu ◽  
Ryo Kanda ◽  
S. Paul Smith

Abstract The elliptic algebras in the title are connected graded $\mathbb {C}$ -algebras, denoted $Q_{n,k}(E,\tau )$ , depending on a pair of relatively prime integers $n>k\ge 1$ , an elliptic curve E and a point $\tau \in E$ . This paper examines a canonical homomorphism from $Q_{n,k}(E,\tau )$ to the twisted homogeneous coordinate ring $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ on the characteristic variety $X_{n/k}$ for $Q_{n,k}(E,\tau )$ . When $X_{n/k}$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ is surjective, the relations for $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ are generated in degrees $\le 3$ and the noncommutative scheme $\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $X_{n/k}=E^g$ and $\tau =0$ , the results about $B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$ show that the morphism $\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.


Sign in / Sign up

Export Citation Format

Share Document