scholarly journals STABILITY OF GORENSTEIN FLAT MODULES

2011 ◽  
Vol 54 (1) ◽  
pp. 169-175 ◽  
Author(s):  
SAMIR BOUCHIBA ◽  
MOSTAFA KHALOUI

AbstractSather-Wagstaff et al. proved in [8] (S. Sather-Wagsta, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc.(2), 77(2) (2008), 481–502) that iterating the process used to define Gorenstein projective modules exactly leads to the Gorenstein projective modules. Also, they established in [9] (S. Sather-Wagsta, T. Sharif and D. White, AB-contexts and stability for Goren-stein at modules with respect to semi-dualizing modules, Algebra Represent. Theory14(3) (2011), 403–428) a stability of the subcategory of Gorenstein flat modules under a procedure to build R-modules from complete resolutions. In this paper we are concerned with another kind of stability of the class of Gorenstein flat modules via-à-vis the very Gorenstein process used to define Gorenstein flat modules. We settle in affirmative the following natural question in the setting of a left GF-closed ring R: Given an exact sequence of Gorenstein flat R-modules G = ⋅⋅⋅ G2G1G0G−1G−2 ⋅⋅⋅ such that the complex H ⊗RG is exact for each Gorenstein injective right R-module H, is the module M:= Im(G0 → G−1) a Gorenstein flat module?

2018 ◽  
Vol 17 (01) ◽  
pp. 1850014 ◽  
Author(s):  
Jian Wang ◽  
Yunxia Li ◽  
Jiangsheng Hu

In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.


2013 ◽  
Vol 20 (04) ◽  
pp. 623-636 ◽  
Author(s):  
Samir Bouchiba

The purpose of this paper is to give, via totally different techniques, an alternate proof to the main theorem of [18] in the category of modules over an arbitrary ring R. In effect, we prove that this theorem follows from establishing a sequence of equalities between specific classes of R-modules. Actually, we tackle the following natural question: What notion emerges when iterating the very process applied to build the Gorenstein projective and Gorenstein injective modules from complete resolutions? In other words, given an exact sequence of Gorenstein injective R-modules G= ⋯ → G1→ G0→ G-1→ ⋯ such that the complex Hom R(H,G) is exact for each Gorenstein injective R-module H, is the module Im (G0→ G-1) Gorenstein injective? We settle such a question in the affirmative and the dual result for the Gorenstein projective modules follows easily via a similar treatment to that used in this paper. As an application, we provide the Gorenstein versions of the change of rings theorems for injective modules over an arbitrary ring.


2018 ◽  
Vol 25 (02) ◽  
pp. 203-216
Author(s):  
Fuad Ali Ahmed Almahdi ◽  
Mohammed Tamekkante

The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-flat module if [Formula: see text] is GV-torsion for all R-modules N. In this paper, we introduce the w-operation in Gorenstein homological algebra. An R-module M is called Ding w-flat if there exists an exact sequence of projective R-modules … → P1 → P0 → P0 → P1 → … such that M ≅ Im(P0 → P0) and such that the functor HomR(−, F) leaves the sequence exact whenever F is w-flat. Several wellknown classes of rings are characterized in terms of Ding w-flat modules. Some examples are given to show that Ding w-flat modules lie strictly between projective modules and Gorenstein projective modules. The Ding w-flat dimension (of modules and rings) and the existence of Ding w-flat precovers are also studied.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650156
Author(s):  
Bin Yu

In this paper, we investigate the rings over which a module is Gorenstein flat if and only if it is Gorenstein projective. Some examples of such rings are given. We show that over such rings the class of Gorenstein projective modules is covering. We also characterize the rings over which the class of Gorenstein projective modules is preenveloping. As a conclusion, we obtain that a commutative ring is artinian if and only if every module has a Gorenstein projective preenvelope. The existence of pure injective Gorenstein injective preenvelopes over certain rings is also shown.


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


2009 ◽  
Vol 86 (3) ◽  
pp. 323-338 ◽  
Author(s):  
NANQING DING ◽  
YUANLIN LI ◽  
LIXIN MAO

AbstractIn this paper, strongly Gorenstein flat modules are introduced and investigated. An R-module M is called strongly Gorenstein flat if there is an exact sequence ⋯→P1→P0→P0→P1→⋯ of projective R-modules with M=ker (P0→P1) such that Hom(−,F) leaves the sequence exact whenever F is a flat R-module. Several well-known classes of rings are characterized in terms of strongly Gorenstein flat modules. Some examples are given to show that strongly Gorenstein flat modules over coherent rings lie strictly between projective modules and Gorenstein flat modules. The strongly Gorenstein flat dimension and the existence of strongly Gorenstein flat precovers and pre-envelopes are also studied.


2009 ◽  
Vol 87 (3) ◽  
pp. 395-407 ◽  
Author(s):  
ZHONGKUI LIU ◽  
XIAOYAN YANG

AbstractIn basic homological algebra, projective, injective and flat modules play an important and fundamental role. In this paper, we discuss some properties of Gorenstein projective, injective and flat modules and study some connections between Gorenstein injective and Gorenstein flat modules. We also investigate some connections between Gorenstein projective, injective and flat modules under change of rings.


Sign in / Sign up

Export Citation Format

Share Document