scholarly journals THE SYMMETRIC GENUS OF 2-GROUPS

2012 ◽  
Vol 55 (1) ◽  
pp. 9-21 ◽  
Author(s):  
COY L. MAY ◽  
JAY ZIMMERMAN

AbstractLet G be a finite group. The symmetric genus σ(G) is the minimum genus of any Riemann surface on which G acts faithfully. We show that if G is a group of order 2m that has symmetric genus congruent to 3 (mod 4), then either G has exponent 2m−3 and a dihedral subgroup of index 4 or else the exponent of G is 2m−2. We then prove that there are at most 52 isomorphism types of these 2-groups; this bound is independent of the size of the 2-group G. A consequence of this bound is that almost all positive integers that are the symmetric genus of a 2-group are congruent to 1 (mod 4).

2010 ◽  
Vol 09 (03) ◽  
pp. 465-481 ◽  
Author(s):  
COY L. MAY ◽  
JAY ZIMMERMAN

Let G be a finite group. The strong symmetric genusσ0(G) is the minimum genus of any Riemann surface on which G acts preserving orientation. We show that a 2-group G has strong symmetric genus congruent to 3 (mod 4) if and only if G is in one of 14 families of groups. A consequence of this classification is that almost all positive integers that are the genus of a 2-group are congruent to 1 (mod 4).


2018 ◽  
Vol 61 (2) ◽  
pp. 381-423
Author(s):  
JÜRGEN MÜLLER ◽  
SIDDHARTHA SARKAR

AbstractThe genus spectrum of a finite group G is the set of all g such that G acts faithfully on a compact Riemann surface of genus g. It is an open problem to find a general description of the genus spectrum of the groups in interesting classes, such as the Abelian p-groups. Motivated by earlier work of Talu for odd primes, we develop a general combinatorial method, for arbitrary primes, to obtain a structured description of the so-called reduced genus spectrum of Abelian p-groups, including the reduced minimum genus. In particular, we determine the complete genus spectrum for a large subclass, namely, those having ‘large’ defining invariants. With our method we construct infinitely many counterexamples to a conjecture of Talu, which states that an Abelian p-group is recoverable from its genus spectrum. Finally, we give a series of examples of our method, in the course of which we prove, for example, that almost all elementary Abelian p-groups are uniquely determined by their minimum genus, and that almost all Abelian p-groups of exponent p2 are uniquely determined by their minimum genus and Kulkarni invariant.


2015 ◽  
Vol 67 (4) ◽  
pp. 848-869 ◽  
Author(s):  
Bernhard Köck ◽  
Joseph Tait

AbstractGiven a faithful action of a finite groupGon an algebraic curveXof genusgX≥ 2, we giveexplicit criteria for the induced action ofGon the Riemann–Roch spaceH0(X,OX(D)) to be faithful,whereDis aG-invariant divisor on X of degree at least 2gX− 2. This leads to a concise answer to the question of when the action ofGon the spaceH0(X,Ωx⊗m) of global holomorphic polydifferentials of order m is faithful. IfXis hyperelliptic, we provide an explicit basis of H0(X,Ωx⊗m). Finally, we giveapplications in deformation theory and in coding theory and discuss the analogous problem for theaction ofGon the first homologyH1(X,ℤ/mℤ) ifXis a Riemann surface.


Author(s):  
Rolf Brandl

AbstractA classical result of M. Zorn states that a finite group is nilpotent if and only if it satisfies an Engel condition. If this is the case, it satisfies almost all Engel conditions. We shall give a similar description of the class of p-soluble groups of p-length one by a sequence of commutator identities.


1983 ◽  
Vol 28 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Rolf Brandl

Every finite group G satisfies a law [x, ry] = [x, sy] for some positive integers r < s. The minimal value of r is called the depth of G. It is well known that groups of depth 1 are abelian. In this paper we prove the following. Let G be a finite group of depth 2. Then G/F(G) is supersoluble, metabelian and has abelian Sylow p-subgroups for all odd primes p. Moreover, lp(G) ≤ 1 for p odd and l2(G2) ≤ 1.


2002 ◽  
Vol 01 (03) ◽  
pp. 267-279 ◽  
Author(s):  
AMIR KHOSRAVI ◽  
BEHROOZ KHOSRAVI

Let G be a finite group. Based on the prime graph of G, the order of G can be divided into a product of coprime positive integers. These integers are called order components of G and the set of order components is denoted by OC(G). Some non-abelian simple groups are known to be uniquely determined by their order components. In this paper we prove that almost sporadic simple groups, except Aut (J2) and Aut (McL), and the automorphism group of PSL(2, 2n) where n=2sare also uniquely determined by their order components. Also we discuss about the characterizability of Aut (PSL(2, q)). As corollaries of these results, we generalize a conjecture of J. G. Thompson and another conjecture of W. Shi and J. Bi for the groups under consideration.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950013
Author(s):  
Alireza Abdollahi ◽  
Maysam Zallaghi

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.


1981 ◽  
Vol 33 (5) ◽  
pp. 1142-1156
Author(s):  
Kathryn Kuiken

It is well-known [5, 19] that every finite group can appear as a group of automorphisms of an algebraic Riemann surface. Hurwitz [9, 10] showed that the order of such a group can never exceed 84 (g – 1) provided that the genus g is ≧2. In fact, he showed that this bound is the best possible since groups of automorphisms of order 84 (g – 1) are obtainable for some surfaces of genus g. The problems considered by Hurwitz and others can be considered as particular cases of a more general question: Given a finite group G, what is the minimum genus of the surface for which it is a group of automorphisms? This question has been completely answered for cyclic groups by Harvey [7]. Wiman's bound 2(2g + 1), the best possible, materializes as a consequence. A further step was taken by Maclachlan who answered this question for non-cyclic Abelian groups.


1999 ◽  
Vol 41 (1) ◽  
pp. 115-124 ◽  
Author(s):  
JAY ZIMMERMAN

A finite group G can be represented as a group of automorphisms of a compact Riemann surface, that is, G acts on a Riemann surface. The symmetric genus σ(G) is the minimum genus of any Riemann surface on which G acts (possibly reversing orientation).


1995 ◽  
Vol 117 (1) ◽  
pp. 137-151 ◽  
Author(s):  
Monique Gradolato ◽  
Bruno Zimmermann

Let G be a finite group of orientation preserving isometrics of a closed orientable hyperbolic 2-manifold Fg of genus g > 1 (or equivalently, a finite group of conformal automorphisms of a closed Riemann surface). We say that the G-action on Fgbounds a hyperbolic 3-manifold M if M is a compact orientable hyperbolic 3-manifold with totally geodesic boundary Fg (as the only boundary component) such that the G-action on Fg extends to a G-action on M by isometrics. Symmetrically we will also say that the 3-manifold M bounds the given G-action. We are especially interested in Hurwitz actions, i.e. finite group actions on surfaces of maximal possible order 84(g — 1); the corresponding finite groups are called Hurwitz groups. First examples of bounding and non-bounding Hurwitz actions were given in [16].


Sign in / Sign up

Export Citation Format

Share Document