scholarly journals A few remarks on Pimsner–Popa bases and regular subfactors of depth 2

2021 ◽  
pp. 1-17
Author(s):  
Keshab Chandra Bakshi ◽  
Ved Prakash Gupta

Abstract We prove that a finite index regular inclusion of $II_1$ -factors with commutative first relative commutant is always a crossed product subfactor with respect to a minimal action of a biconnected weak Kac algebra. Prior to this, we prove that every finite index inclusion of $II_1$ -factors which is of depth 2 and has simple first relative commutant (respectively, is regular and has commutative or simple first relative commutant) admits a two-sided Pimsner–Popa basis (respectively, a unitary orthonormal basis).

2018 ◽  
Vol 2020 (19) ◽  
pp. 6007-6041 ◽  
Author(s):  
Yuhei Suzuki

Abstract We extend Matui’s notion of almost finiteness to general étale groupoids and show that the reduced groupoid C$^{\ast }$-algebras of minimal almost finite groupoids have stable rank 1. The proof follows a new strategy, which can be regarded as a local version of the large subalgebra argument. The following three are the main consequences of our result: (1) for any group of (local) subexponential growth and for any its minimal action admitting a totally disconnected free factor, the crossed product has stable rank 1; (2) any countable amenable group admits a minimal action on the Cantor set, all whose minimal extensions form the crossed product of stable rank 1; and (3) for any amenable group, the crossed product of the universal minimal action has stable rank 1.


2012 ◽  
Vol 14 (06) ◽  
pp. 1250038 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAHAN MJ ◽  
HARISH SESHADRI

Let G be a Kähler group admitting a short exact sequence [Formula: see text] where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on ℍn for some n ≥ 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in [Which 3-manifold groups are Kähler groups? J. Eur. Math. Soc.11 (2009) 521–528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kähler groups. This gives a negative answer to a question of Gromov which asks whether Kähler groups can be characterized by their asymptotic geometry.


2021 ◽  
Vol 127 (2) ◽  
pp. 317-336
Author(s):  
Kazunori Kodaka

We consider two twisted actions of a countable discrete group on $\sigma$-unital $C^*$-algebras. Then by taking the reduced crossed products, we get two inclusions of $C^*$-algebras. We suppose that they are strongly Morita equivalent as inclusions of $C^*$-algebras. Also, we suppose that one of the inclusions of $C^*$-algebras is irreducible, that is, the relative commutant of one of the $\sigma$-unital $C^*$-algebra in the multiplier $C^*$-algebra of the reduced twisted crossed product is trivial. We show that the two actions are then strongly Morita equivalent up to some automorphism of the group.


2011 ◽  
Vol 32 (1) ◽  
pp. 273-293 ◽  
Author(s):  
MIKAEL RØRDAM ◽  
ADAM SIERAKOWSKI

AbstractWe study conditions that will ensure that a crossed product of a C*-algebra by a discrete exact group is purely infinite (simple or non-simple). We are particularly interested in the case of a discrete non-amenable exact group acting on a commutative C*-algebra, where our sufficient conditions can be phrased in terms of paradoxicality of subsets of the spectrum of the abelian C*-algebra. As an application of our results we show that every discrete countable non-amenable exact group admits a free amenable minimal action on the Cantor set such that the corresponding crossed product C*-algebra is a Kirchberg algebra in the UCT class.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


Sign in / Sign up

Export Citation Format

Share Document