scholarly journals The queue with impatience: construction of the stationary workload under FIFO

2010 ◽  
Vol 47 (02) ◽  
pp. 498-512 ◽  
Author(s):  
Pascal Moyal

In this paper we study the stability of queueing systems with impatient customers and a single server operating under a FIFO (first-in-first-out) discipline. We first give a sufficient condition for the existence of a stationary workload in the case of impatience until the beginning of service. We then provide a weaker condition of existence on an enriched probability space using the theory of Anantharam et al. (1997), (1999). The case of impatience until the end of service is also investigated.

2010 ◽  
Vol 47 (2) ◽  
pp. 498-512 ◽  
Author(s):  
Pascal Moyal

In this paper we study the stability of queueing systems with impatient customers and a single server operating under a FIFO (first-in-first-out) discipline. We first give a sufficient condition for the existence of a stationary workload in the case of impatience until the beginning of service. We then provide a weaker condition of existence on an enriched probability space using the theory of Anantharam et al. (1997), (1999). The case of impatience until the end of service is also investigated.


2005 ◽  
Vol 42 (04) ◽  
pp. 1145-1167 ◽  
Author(s):  
Moez Draief ◽  
Jean Mairesse ◽  
Neil O'Connell

Consider the single-server queue with an infinite buffer and a first-in–first-out discipline, either of type M/M/1 or Geom/Geom/1. Denote by 𝒜 the arrival process and by s the services. Assume the stability condition to be satisfied. Denote by 𝒟 the departure process in equilibrium and by r the time spent by the customers at the very back of the queue. We prove that (𝒟, r) has the same law as (𝒜, s), which is an extension of the classical Burke theorem. In fact, r can be viewed as the sequence of departures from a dual storage model. This duality between the two models also appears when studying the transient behaviour of a tandem by means of the Robinson–Schensted–Knuth algorithm: the first and last rows of the resulting semistandard Young tableau are respectively the last instant of departure from the queue and the total number of departures from the store.


1997 ◽  
Vol 11 (4) ◽  
pp. 441-450 ◽  
Author(s):  
Hiroshi Toyoizumi ◽  
J. George Shanthikumar ◽  
Ronald W. Wolff

Extremal arrival processes, in the sense of increasing convex order of waiting time of queueing systems, are investigated. Two types of extremal processes are proposed: one in the class of processes that have identical marginal distributions and the other in the class of bounded stochastic processes that have the same mean and covariance structure. The worst performance with regard to waiting time in the sense of increasing convex order is guaranteed when these extremal processes are fed into a first in-first out single-server queue.


2005 ◽  
Vol 42 (4) ◽  
pp. 1145-1167 ◽  
Author(s):  
Moez Draief ◽  
Jean Mairesse ◽  
Neil O'Connell

Consider the single-server queue with an infinite buffer and a first-in–first-out discipline, either of type M/M/1 or Geom/Geom/1. Denote by 𝒜 the arrival process and by s the services. Assume the stability condition to be satisfied. Denote by 𝒟 the departure process in equilibrium and by r the time spent by the customers at the very back of the queue. We prove that (𝒟, r) has the same law as (𝒜, s), which is an extension of the classical Burke theorem. In fact, r can be viewed as the sequence of departures from a dual storage model. This duality between the two models also appears when studying the transient behaviour of a tandem by means of the Robinson–Schensted–Knuth algorithm: the first and last rows of the resulting semistandard Young tableau are respectively the last instant of departure from the queue and the total number of departures from the store.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


Author(s):  
Ebrahim Esmailzadeh ◽  
Gholamreza Nakhaie-Jazar ◽  
Bahman Mehri

Abstract The transverse vibrating motion of a simple beam with one end fixed while driven harmonically along its axial direction from the other end is investigated. For a special case of zero value for the rigidity of the beam, the system reduces to that of a vibrating string with the corresponding equation of its motion. The sufficient condition for the periodic solution of the beam is then derived by means of the Green’s function and Schauder’s fixed point theorem. The criteria for the stability of the system is well defined and the condition for which the performance of the beam behaves as a nonlinear function is stated.


Sign in / Sign up

Export Citation Format

Share Document