scholarly journals Efficient Estimation of One-Dimensional Diffusion First Passage Time Densities via Monte Carlo Simulation

2011 ◽  
Vol 48 (03) ◽  
pp. 699-712
Author(s):  
Tomoyuki Ichiba ◽  
Constantinos Kardaras

We propose a method for estimating first passage time densities of one-dimensional diffusions via Monte Carlo simulation. Our approach involves a representation of the first passage time density as the expectation of a functional of the three-dimensional Brownian bridge. As the latter process can be simulated exactly, our method leads to almost unbiased estimators. Furthermore, since the density is estimated directly, a convergence of order 1 / √N, where N is the sample size, is achieved, which is in sharp contrast to the slower nonparametric rates achieved by kernel smoothing of cumulative distribution functions.

2011 ◽  
Vol 48 (3) ◽  
pp. 699-712 ◽  
Author(s):  
Tomoyuki Ichiba ◽  
Constantinos Kardaras

We propose a method for estimating first passage time densities of one-dimensional diffusions via Monte Carlo simulation. Our approach involves a representation of the first passage time density as the expectation of a functional of the three-dimensional Brownian bridge. As the latter process can be simulated exactly, our method leads to almost unbiased estimators. Furthermore, since the density is estimated directly, a convergence of order 1 / √N, where N is the sample size, is achieved, which is in sharp contrast to the slower nonparametric rates achieved by kernel smoothing of cumulative distribution functions.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Chuancun Yin ◽  
Huiqing Wang

We consider the general one-dimensional time-homogeneous regular diffusion process between two reflecting barriers. An approach based on the Itô formula with corresponding boundary conditions allows us to derive the differential equations with boundary conditions for the Laplace transform of the first passage time and the value function. As examples, the explicit solutions of them for several popular diffusions are obtained. In addition, some applications to risk theory are considered.


2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Mario Lefebvre

LetX(t)be a controlled one-dimensional diffusion process having constant infinitesimal variance. We consider the problem of optimally controllingX(t)until timeT(x)=min{T1(x),t1}, whereT1(x)is the first-passage time of the process to a given boundary andt1is a fixed constant. The optimal control is obtained explicitly in the particular case whenX(t)is a controlled Wiener process.


1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


Sign in / Sign up

Export Citation Format

Share Document