scholarly journals Cover Times and Generic Chaining

2014 ◽  
Vol 51 (01) ◽  
pp. 247-261
Author(s):  
Joseph Lehec

A recent result of Ding, Lee and Peres (2012) expressed the cover time of the random walk on a graph in terms of generic chaining for the commute distance. Their argument is based on Dynkin's isomorphism theorem. The purpose of this article is to present an alternative approach to this problem, based only on elementary hitting time estimates and chaining arguments.

2014 ◽  
Vol 51 (1) ◽  
pp. 247-261
Author(s):  
Joseph Lehec

A recent result of Ding, Lee and Peres (2012) expressed the cover time of the random walk on a graph in terms of generic chaining for the commute distance. Their argument is based on Dynkin's isomorphism theorem. The purpose of this article is to present an alternative approach to this problem, based only on elementary hitting time estimates and chaining arguments.


2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


Author(s):  
Agelos Georgakopoulos ◽  
John Haslegrave ◽  
Thomas Sauerwald ◽  
John Sylvester

Abstract We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number n of vertices on discrete tori and bounded degree trees, of order $${\mathcal O}(n\log \log n)$$ on bounded degree expanders, and of order $${\mathcal O}(n{(\log \log n)^2})$$ on the Erdős–Rényi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy and prove a dichotomy in efficiency between computing strategies for hitting and cover times.


2000 ◽  
Vol 32 (1) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2019 ◽  
Vol 33 (4) ◽  
pp. 2167-2184
Author(s):  
Jonathan Hermon

Abstract We prove that for a sequence of finite vertex-transitive graphs of increasing sizes, the cover times are asymptotically concentrated if and only if the product of the spectral gap and the expected cover time diverges. In fact, we prove this for general reversible Markov chains under the much weaker assumption (than transitivity) that the maximal hitting time of a state is of the same order as the average hitting time.


2013 ◽  
Vol 23 (2) ◽  
pp. 269-289 ◽  
Author(s):  
TAL ORENSHTEIN ◽  
IGOR SHINKAR

We study a discrete time self-interacting random process on graphs, which we call greedy random walk. The walker is located initially at some vertex. As time evolves, each vertex maintains the set of adjacent edges touching it that have not yet been crossed by the walker. At each step, the walker, being at some vertex, picks an adjacent edge among the edges that have not traversed thus far according to some (deterministic or randomized) rule. If all the adjacent edges have already been traversed, then an adjacent edge is chosen uniformly at random. After picking an edge the walker jumps along it to the neighbouring vertex. We show that the expected edge cover time of the greedy random walk is linear in the number of edges for certain natural families of graphs. Examples of such graphs include the complete graph, even degree expanders of logarithmic girth, and the hypercube graph. We also show that GRW is transient in$\mathbb{Z}^d$for alld≥ 3.


Sign in / Sign up

Export Citation Format

Share Document