Stochastic linearization: the theory

1998 ◽  
Vol 35 (03) ◽  
pp. 718-730 ◽  
Author(s):  
Pierre Bernard ◽  
Liming Wu

Very little is known about the quantitative behaviour of dynamical systems with random excitation, unless the system is linear. Known techniques imply the resolution of parabolic partial differential equations (Fokker–Planck–Kolmogorov equation), which are degenerate and of high dimension and for which there is no effective known method of resolution. Therefore, users (physicists, mechanical engineers) concerned with such systems have had to design global linearization techniques, known as equivalent statistical linearization (Roberts and Spanos (1990)). So far, there has been no rigorous justification of these techniques, with the notable exception of the paper by Kozin (1987). In this contribution, using large deviation principles, several mathematically founded linearization methods are proposed. These principles use relative entropy, or Kullback information, of two probability measures, and Donsker–Varadhan entropy of a Gaussian measure relatively to a Markov kernel. The method of ‘true linearization’ (Roberts and Spanos (1990)) is justified.

1998 ◽  
Vol 35 (3) ◽  
pp. 718-730 ◽  
Author(s):  
Pierre Bernard ◽  
Liming Wu

Very little is known about the quantitative behaviour of dynamical systems with random excitation, unless the system is linear. Known techniques imply the resolution of parabolic partial differential equations (Fokker–Planck–Kolmogorov equation), which are degenerate and of high dimension and for which there is no effective known method of resolution. Therefore, users (physicists, mechanical engineers) concerned with such systems have had to design global linearization techniques, known as equivalent statistical linearization (Roberts and Spanos (1990)). So far, there has been no rigorous justification of these techniques, with the notable exception of the paper by Kozin (1987). In this contribution, using large deviation principles, several mathematically founded linearization methods are proposed. These principles use relative entropy, or Kullback information, of two probability measures, and Donsker–Varadhan entropy of a Gaussian measure relatively to a Markov kernel. The method of ‘true linearization’ (Roberts and Spanos (1990)) is justified.


2000 ◽  
Vol 22 (3) ◽  
pp. 181-192
Author(s):  
Nguyen Tien Khiem

The weakly nonlinear systems subjected to deterministic excitations have been fully and deeply studied by use of the well developed asymptotic methods [1-4]. The systems excited by a random load have been investigated mostly using the Fokker-Plank-Kolmogorov equation technique combined with the asymptotic methods [5-8]. However, the last approach in most successful cases allows to obtain only a stationary single point probability density function, that contains no information about the correlation nor' consequently, the spectral structure of the response. The linearization technique [9, 10] in general permits the spectral density of the response to be determined, but the spectral function obtained by this method because of the linearization eliminates the effect of the nonlinearity. Thus, spectral structure of response of weakly nonlinear systems to random excitation, to the author's knowledge, has not been studied enough. This paper deals with the above mentioned problem. The main idea of this work is the use of an analytical simulation of random excitation given by its spectral density function and afterward application of the well known procedure of the asymptotic method to obtain an asymptotic expression of the response spectral density function. The obtained spectral relationship covers the linear system case and especially emphasizes the nonlinear effect on the spectral density of response. The theory will be illustrated by an example and at the end of this paper there will be a discussion about the obtained results.  


1993 ◽  
Vol 15 (4) ◽  
pp. 1-6
Author(s):  
Di Paola Mario ◽  
Nguyen Dong Anh

Stochastic linearization method is one of the most useful tools for analysis of nonlinear systems under random excitation. The fundamental idea of the classical stochastic linearization consists in replacing the original nonlinear equation by a linear one in such a way that the difference between two equations is minimized in the mean square value. In this paper a new version of the stochastic linearization is proposed. It is shown that for two nonlinear systems considered the new version gives good results for both the weak and strong nonlinearities.


2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Pol D. Spanos ◽  
Alberto Di Matteo ◽  
Yezeng Cheng ◽  
Antonina Pirrotta ◽  
Jie Li

In this paper, an approximate semi-analytical approach is developed for determining the first-passage probability of randomly excited linear and lightly nonlinear oscillators endowed with fractional derivative elements. The amplitude of the system response is modeled as one-dimensional Markovian process by employing a combination of the stochastic averaging and the statistical linearization techniques. This leads to a backward Kolmogorov equation which governs the evolution of the survival probability of the oscillator. Next, an approximate solution of this equation is sought by resorting to a Galerkin scheme. Specifically, a convenient set of confluent hypergeometric functions, related to the corresponding linear oscillator with integer-order derivatives, is used as orthogonal basis for this scheme. Applications to the standard viscous linear and to nonlinear (Van der Pol and Duffing) oscillators are presented. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed approximate analytical solution.


Sign in / Sign up

Export Citation Format

Share Document