linearization methods
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 38)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdulsattar Abdullah Hamad ◽  
M. Lellis Thivagar ◽  
Malik Bader Alazzam ◽  
Fawaz Alassery ◽  
Muayyad Mahmood Khalil ◽  
...  

Hybrid synchronization is one of the most significant aspects of a dynamic system. We achieve nonlinear control unit results to synchronize two comparable 7D structures in this study. Many dynamic systems are directly connected to health care and directly enhance health. We employed linearization and Lyapunov as analytical methods, and since the linearization method does not need updating the Lyapunov function, it is more successful in achieving synchronization phenomena with better outcomes than the Lyapunov method. The two methods were combined, and the result was a striking resemblance to the dynamic system’s mistake. The mathematical system with control and error of the dynamic system was subjected to digital emulation. The digital good outcomes were comparable to the two methods previously stated. We compared the outcomes of three hybrid synchronizations based on Lyapunov and linearization methods. Finally, we used the existing system, presenting it in a new attractor and comparing the findings to those of other similar systems.


Author(s):  
Katalin György ◽  
László Dávid

Abstract Majority of the optimal control techniques can only be applied successfully if the model of the controlled process is known and it is linear. If the system model is nonlinear, then this nonlinear model can be approximated with different simple, linear models. However, these models are valid only in the neighbourhood of the operating points. The success of the control algorithms is highly dependent on the used linearization methods. The aim of the paper is to compare different optimal control algorithms and linearization methods. The presented optimal control algorithms have been also tested in constrained and unconstrained versions.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6191
Author(s):  
Ulantay Nakan ◽  
Shayahati Bieerkehazhi ◽  
Balgyn Tolkyn ◽  
Grigoriy A. Mun ◽  
Mukhit Assanov ◽  
...  

Hydrogel copolymers based on N,N-dimethyl acrylamide (DMA) and acrylic acid (AAc) were synthesized using a solution polymerization technique with different monomer ratios and ammonium persulfate as an initiator. This paper investigates the thermal stability, physical and chemical properties of the hydrogel copolymer. Testing includes Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and elemental analysis (CHNS). The copolymer composition was determined by elemental analysis, and the reactivity ratios of monomers were calculated through linearization methods such as Fineman–Ross (FR), inverted Fineman–Ross (IFR), Kelen–Tudos (KT) and Mayo–Lewis (ML). Good agreement was observed between the results of all four methods. The ratio of r1 and r2 were 0.38 (r1) and 1.45 (r2) (FR), 0.38 (r1) and 1.46 (r2) (IFR), 0.38 (r1) and 1.43 (r2) (KT), and 0.38 (r1) and 1.45 (r2) (ML). Hydrogel copolymers exhibited good thermal stability, and SEM showed three-dimensional porous structures. Antibiotic-free and antibiotic-loaded hydrogels demonstrated antimicrobial properties against both Gram-positive and Gram-negative bacteria. As the ratio of DMA in hydrogel copolymer increased, the activity of copolymer against bacteria enhanced. The results indicated that these hydrogels have the potential to be used as antibacterial materials.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Xuelei Li ◽  
Yanjie Wei ◽  
Wei Ouyang

Linearized algorithms based on the Born approximation are well-known and popular techniques for quantitative seismic imaging and inversion. However, linearization methods usually suffer from some significant problems, such as computational cost for the required number of iterations, requirement for background models, and uncertain and unstable multi-parameter extraction, which make the methods difficult to implement in practical applications. To avoid these problems, we propose an angle-domain generalized Radon transform (AD-GRT) inversion in 2D elastic isotropic media. This AD-GRT is an approximate transform between the seismic data and an angle-domain model, which acts as a scattering function, and the seismic data can be reconstructed accurately, even when the background models are incorrect. The density and Lam短oduli perturbation parameters can be extracted stably from the inverted angle-domain scattering function. Deconvolution of the source wavelet is taken into account to remove the effect of the wavelet and improve the resolution and accuracy of the inversion results. The derived AD-GRT inversion is non-iterative and is as efficient as the traditional elastic GRT method. The additional dimension of the angle domain has little effect on the computational cost of the AD-GRT, as opposed to other extended-domain inversion/migration methods. Our method also can be used to solve non-linear Born inversion problems using iteration, which can significantly improve their convergence rate. Three numerical examples illustrate that the angle-domain scattering function inversion, data reconstruction, and multi-parameter extraction using the presented AD-GRT inversion are effective.


2021 ◽  
Vol 11 (16) ◽  
pp. 7615
Author(s):  
Paweł Parulski ◽  
Patryk Bartkowiak ◽  
Dariusz Pazderski

The aim of this paper is to test the usefulness of a new approach based on partial feedback linearization to control the Pendubot. The control problem stated in the article is to stabilize the Pendubot in the upright position. In particular, properties of the closed-loop system and the zero dynamics are investigated and illustrated by results of simulations. Next, the performance of a hybrid-like controller in the case of input saturation is evaluated by conduction extensive simulation trails. The experimental results suggest that the considered control methodology can be successfully applied for a real system.


Author(s):  
Can Ding ◽  
Jing Zhang ◽  
Yingjie Zhang ◽  
Zhe Zhang

Abstract This paper studies the trajectory tracking control problem of second-order underactuated system subject to system uncertainties and prescribed performance constraints. By combining radial basis function neural networks (RBFNNs) with input–output linearization methods, an adaptive neural network-based control approach is proposed and the adaptive laws are given through Lyapunov method and Taylor expansion linearization approach. The main contributions of this paper are that: (1) by introducing weight performance function and transformation function, the states never violate the prescribed performance constraints; (2) the control scheme takes the unknown control gain direction into consideration and the singular problem of control design can be avoided; (3) through rigorously stability analysis, all signal of closed-loop system are proved to be uniformly ultimately bounded. The effectiveness of the proposed control scheme was verified by comparative simulation.


2021 ◽  
Vol 17 ◽  
pp. 75-80
Author(s):  
Mert Sever ◽  
Chingiz Hajiyev

Precise and accurate estimation of state vectors is an important process during position determination. In this study, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) of stationary user, state vectors defined in Earth Centered Inertial (ECI) coordinate system, accompanied by GNSS measurement data. It is aimed to make estimations with methods. EKF and UKF methods were compared with each other. In this study, the effects of nonlinear motion analysis and linearization methods on state vector estimations were investigated. Thanks to this study, estimations of the positioning information required during the specific tasks of many moving platforms have been made.


2021 ◽  
pp. 107754632110195
Author(s):  
Ghasem Asadpour ◽  
Payam Asadi ◽  
Iman Hajirasouliha

Nonlinear viscous dampers can efficiently improve the seismic performance of structures by dissipating large amounts of earthquake-induced energy. In common practice, the spectral analysis of structures with nonlinear viscous dampers is generally conducted based on an estimated equivalent damping ratio. To this end, the stochastic linearization technique can be used as an effective probabilistic approach to take into account the evolutionary characteristics of the input earthquake excitation. This study aims to present optimal non-Gaussian probability density functions to improve the accuracy of the stochastic linearization technique for nonlinear viscous dampers in both firm and soft soil-based structures. It is shown that by using the optimum probability density functions, the computational error of the stochastic linearization technique for a single-degree-of-freedom structure under simulated ground motions, with a range of peak ground accelerations between 0.1 and 0.6 g, is reduced by up to 70%. The efficiency of the proposed probability density functions is then demonstrated for multi-degree-of-freedom structures, by estimating the roof displacements of a six-story steel frame with nonlinear viscous dampers under a set of natural ground motions using different linearization methods. The comparison of the stochastic linearization technique estimated responses with the exact values confirms that using the proposed probability density functions leads to considerably lower errors in both firm and soft soil-based structures compared with the other linearization techniques.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1073
Author(s):  
Andžej Borel ◽  
Vaidotas Barzdėnas ◽  
Aleksandr Vasjanov

Development of 5G networks requires a substantial increase to both spectral and power efficiency of transmitters. It is known that these two parameters are subjected to a mutual trade-off. To increase the linearity without losing power efficiency, linearization techniques are applied to power amplifiers. This paper aims to compare most popular linearization techniques to date and evaluate their applicability to upcoming 5G networks. The history of each respective linearization technique is followed by the main principle of operation, revealing advantages and disadvantages supported by concluding the latest research results. Three main groups of linearization methods currently known are feedforward, feedback, and predistortion, each with its own tradeoffs. Although digital predistortion seems to be the go-to method currently, other techniques with less research attention are still non-obsolete. А generalized discussion and a direct comparison of techniques analyzed are presented at the end of this paper. The article offers a systematic view on PA linearization problems which should be useful to researchers of this field. It is concluded that there are still a lot of problems that need to be addressed in every linearization technique in order to achieve 5G specifications.


Sign in / Sign up

Export Citation Format

Share Document