scholarly journals Why is Kemeny’s constant a constant?

2018 ◽  
Vol 55 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dario Bini ◽  
Jeffrey J. Hunter ◽  
Guy Latouche ◽  
Beatrice Meini ◽  
Peter Taylor

Abstract In their 1960 book on finite Markov chains, Kemeny and Snell established that a certain sum is invariant. The value of this sum has become known as Kemeny’s constant. Various proofs have been given over time, some more technical than others. We give here a very simple physical justification, which extends without a hitch to continuous-time Markov chains on a finite state space. For Markov chains with denumerably infinite state space, the constant may be infinite and even if it is finite, there is no guarantee that the physical argument will hold. We show that the physical interpretation does go through for the special case of a birth-and-death process with a finite value of Kemeny’s constant.

1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.


2004 ◽  
Vol 2004 (5) ◽  
pp. 469-489
Author(s):  
P. R. Parthasarathy ◽  
K. V. Vijayashree ◽  
R. B. Lenin

Fluid queue driven by a birth and death process (BDP) with only one negative effective input rate has been considered in the literature. As an alternative, here we consider a fluid queue in which the input is characterized by a BDP with alternating positive and negative flow rates on a finite state space. Also, the BDP has two alternating arrival rates and two alternating service rates. Explicit expression for the distribution function of the buffer occupancy is obtained. The case where the state space is infinite is also discussed. Graphs are presented to visualize the buffer content distribution.


1978 ◽  
Vol 10 (03) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Letqn(t) be the conditioned probability of finding a birth-and-death process in statenat timet,given that absorption into state 0 has not occurred by then. A family {q1(t),q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


2000 ◽  
Vol 37 (4) ◽  
pp. 984-998 ◽  
Author(s):  
Guy Latouche ◽  
P. G. Taylor

GI/M/1-type Markov chains make up a class of two-dimensional Markov chains. One dimension is usually called the level, and the other is often called the phase. Transitions from states in level k are restricted to states in levels less than or equal to k+1. For given transition probabilities in the interior of the state space, we show that it is always possible to define the boundary transition probabilities in such a way that the level and phase are independent under the stationary distribution. We motivate our analysis by first considering the quasi-birth-and-death process special case in which transitions from any state are restricted to states in the same, or adjacent, levels.


1978 ◽  
Vol 10 (3) ◽  
pp. 570-586 ◽  
Author(s):  
James A. Cavender

Let qn(t) be the conditioned probability of finding a birth-and-death process in state n at time t, given that absorption into state 0 has not occurred by then. A family {q1(t), q2(t), · · ·} that is constant in time is a quasi-stationary distribution. If any exist, the quasi-stationary distributions comprise a one-parameter family related to quasi-stationary distributions of finite state-space approximations to the process.


1998 ◽  
Vol 35 (04) ◽  
pp. 812-823 ◽  
Author(s):  
D. M. Walker

This paper considers continuous-time Markov chains whose state space consists of an irreducible class, 𝒞, and an absorbing state which is accessible from 𝒞. The purpose is to provide a way to determine the expected time to absorption conditional on such time being finite, in the case where absorption occurs with probability less than 1. The results are illustrated by applications to the general birth and death process and the linear birth, death and catastrophe process.


2000 ◽  
Vol 37 (04) ◽  
pp. 984-998
Author(s):  
Guy Latouche ◽  
P. G. Taylor

GI/M/1-type Markov chains make up a class of two-dimensional Markov chains. One dimension is usually called the level, and the other is often called the phase. Transitions from states in level k are restricted to states in levels less than or equal to k+1. For given transition probabilities in the interior of the state space, we show that it is always possible to define the boundary transition probabilities in such a way that the level and phase are independent under the stationary distribution. We motivate our analysis by first considering the quasi-birth-and-death process special case in which transitions from any state are restricted to states in the same, or adjacent, levels.


Sign in / Sign up

Export Citation Format

Share Document