On maximum family size in branching processes

1999 ◽  
Vol 36 (03) ◽  
pp. 632-643 ◽  
Author(s):  
Ibrahim Rahimov ◽  
George P. Yanev

The number Y n of offspring of the most prolific individual in the nth generation of a Bienaymé–Galton–Watson process is studied. The asymptotic behaviour of Y n as n → ∞ may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Y n and EY n provided that the offspring mean is finite are obtained using some convergence results for branching processes as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical branching processes are considered separately.

1999 ◽  
Vol 36 (3) ◽  
pp. 632-643 ◽  
Author(s):  
Ibrahim Rahimov ◽  
George P. Yanev

The number Yn of offspring of the most prolific individual in the nth generation of a Bienaymé–Galton–Watson process is studied. The asymptotic behaviour of Yn as n → ∞ may be viewed as an extreme value problem for i.i.d. random variables with random sample size. Limit theorems for both Yn and EYn provided that the offspring mean is finite are obtained using some convergence results for branching processes as well as a transfer limit lemma for maxima. Subcritical, critical and supercritical branching processes are considered separately.


1998 ◽  
Vol 30 (03) ◽  
pp. 777-806 ◽  
Author(s):  
Dmitrii S. Silvestrov ◽  
Jozef L. Teugels

This paper is devoted to the investigation of limit theorems for extremes with random sample size under general dependence-independence conditions for samples and random sample size indexes. Limit theorems of weak convergence type are obtained as well as functional limit theorems for extremal processes with random sample size indexes.


1998 ◽  
Vol 30 (3) ◽  
pp. 777-806 ◽  
Author(s):  
Dmitrii S. Silvestrov ◽  
Jozef L. Teugels

This paper is devoted to the investigation of limit theorems for extremes with random sample size under general dependence-independence conditions for samples and random sample size indexes. Limit theorems of weak convergence type are obtained as well as functional limit theorems for extremal processes with random sample size indexes.


1976 ◽  
Vol 157 (2) ◽  
pp. 142-146 ◽  
Author(s):  
E. Sprenger ◽  
M. Schaden ◽  
D. Wagner ◽  
W. Sandritter

1972 ◽  
Vol 4 (3) ◽  
pp. 393-428 ◽  
Author(s):  
Harry Kesten

We consider d-dimensional stochastic processes which take values in (R+)d These processes generalize Galton-Watson branching processes, but the main assumption of branching processes, independence between particles, is dropped. Instead, we assume for some Here τ:(R+)d→R +, |x| = σ1d |x(i)|, A {x ∈(R+)d: |x| 1} and T: A→A. Under various assumptions on the maps τ and T it is shown that with probability one there exists a ρ > 1, a fixed point p ∈ A of T and a random variable w such that limn→∞Zn|ρnwp. This result is a generalization of the main limit theorem for supercritical branching processes; note, however, that in the present situation both ρ and ρ are random as well. The results are applied to a population genetical model for zygotic selection without mutation at one locus.


1973 ◽  
Vol 73 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Pranab Kumar Sen

AbstractBy the use of a semi-martingale property of the Kolmogorov supremum, the results of Pyke (6) on the weak convergence of the empirical process with random sample size are simplified and extended to the case of p(≥1)-dimensional stochastic vectors.


1972 ◽  
Vol 9 (04) ◽  
pp. 707-724 ◽  
Author(s):  
R. A. Doney

In the Bellman-Harris (B-H) age-dependent branching process, the birth of a child can occur only at the time of its parent's death. A general class of branching process in which births can occur throughout the lifetime of a parent has been introduced by Crump and Mode. This class shares with the B-H process the property that the generation sizes {ξn } form a Galton-Watson process, and so may be classified into subcritical, critical or supercritical according to the value of m = E{ξ 1}. Crump and Mode showed that, as regards extinction probability, asymptotic behaviour, and for the supercritical case, convergence in mean square of Z(t)/E[Z(t)], as t → ∞, where Z(t) is the population size at time t given one ancestor at t = 0, properties of the B-H process can be extended to this general class. In this paper conditions are found for the convergence in distribution of Z(t)/E{Z(t)} in the supercritical case to a non-degenerate limit distribution. In contrast to the B-H process, these conditions are not the same as those for ξn /mn to have a non-degenerate limit. An integral equation is established for the generating function of Z(t), which is more complicated than the corresponding one for the B-H process and involves the conditional probability generating functional of N(x), x 0, ≧ the number of children born to an individual in the age interval [0, x].


Sign in / Sign up

Export Citation Format

Share Document