Analytic solution of a finite dam governed by a general input

1974 ◽  
Vol 11 (01) ◽  
pp. 134-144 ◽  
Author(s):  
S. K. Srinivasan

A stochastic model of a finite dam in which the epochs of input form a renewal process is considered. It is assumed that the quantities of input at different epochs and the inter-input times are two independent families of random variables whose characteristic functions are rational functions. The release rate is equal to unity. An imbedding equation is set up for the probability frequency governing the water level in the first wet period and the resulting equation is solved by Laplace transform technique. Explicit expressions relating to the moments of the random variables representing the number of occasions in which the dam becomes empty as well as the total duration of the dry period in any arbitrary interval of time are indicated for negative exponentially distributed inter-input times.

1974 ◽  
Vol 11 (1) ◽  
pp. 134-144 ◽  
Author(s):  
S. K. Srinivasan

A stochastic model of a finite dam in which the epochs of input form a renewal process is considered. It is assumed that the quantities of input at different epochs and the inter-input times are two independent families of random variables whose characteristic functions are rational functions. The release rate is equal to unity. An imbedding equation is set up for the probability frequency governing the water level in the first wet period and the resulting equation is solved by Laplace transform technique. Explicit expressions relating to the moments of the random variables representing the number of occasions in which the dam becomes empty as well as the total duration of the dry period in any arbitrary interval of time are indicated for negative exponentially distributed inter-input times.


1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Arshad Khan ◽  
Ilyas Khan ◽  
Sharidan Shafie

Effects of Newtonian heating and mass diffusion on magnetohydrodynamic free convection flow over a vertical plate that applies arbitrary shear stress to the fluid is studied. The fluid is considered electrically conducting and passing through a porous medium. The influence of thermal radiation in the energy equations is also considered. General solutions of the problem are obtained in closed form using the Laplace transform technique. They satisfy the governing equations, initial and boundary conditions and can set up a huge number of exact solutions correlatives to various fluid motions. The effects of various parameters on velocity profiles are shown graphically and discussed in details


1994 ◽  
Vol 31 (A) ◽  
pp. 239-250
Author(s):  
Endre Csáki

Some exact and asymptotic joint distributions are given for certain random variables defined on the excursions of a simple symmetric random walk. We derive appropriate recursion formulas and apply them to get certain expressions for the joint generating or characteristic functions of the random variables.


1988 ◽  
Vol 103 (1) ◽  
pp. 147-162 ◽  
Author(s):  
D. H. Fremlin

S. Argyros and N. Kalamidas([l], repeated in [2], Theorem 6·15) proved the following. If κ is a cardinal of uncountable cofinality, and 〈Eξ〉ξ<κ is a family of measurable sets in a probability space (X, μ) such that infξ<κμEξ = δ, and if n ≥ 1, , then there is a set Γ ⊆ κ such that #(Γ) = κ and μ(∩ξ∈IEξ) ≥ γ whenever I ⊆ ξ has n members. In Proposition 7 below I refine this result by (i) taking any γ < δn (which is best possible) and (ii) extending the result to infinite cardinals of countable cofinality, thereby removing what turns out to be an irrelevant restriction. The proof makes it natural to perform a further extension to general uniformly bounded families of non-negative measurable functions in place of characteristic functions.


Sign in / Sign up

Export Citation Format

Share Document