Simple random walk statistics. Part II: Continuous time results

1996 ◽  
Vol 33 (02) ◽  
pp. 331-339 ◽  
Author(s):  
W. Böhm ◽  
W. Panny

In this paper various statistics for randomized random walks and their distributions are presented. The distributional results are derived by means of a limiting procedure applied to the pertaining discrete time process, which has been considered in part I of this work (Katzenbeisser and Panny 1996). This basic approach, originally due to Meisling (1958), seems to offer certain technical advantages, since it avoids the use of Laplace transforms and is even simpler than Feller's randomization technique.

1996 ◽  
Vol 33 (2) ◽  
pp. 331-339 ◽  
Author(s):  
W. Böhm ◽  
W. Panny

In this paper various statistics for randomized random walks and their distributions are presented. The distributional results are derived by means of a limiting procedure applied to the pertaining discrete time process, which has been considered in part I of this work (Katzenbeisser and Panny 1996). This basic approach, originally due to Meisling (1958), seems to offer certain technical advantages, since it avoids the use of Laplace transforms and is even simpler than Feller's randomization technique.


1996 ◽  
Vol 33 (2) ◽  
pp. 311-330 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

In a famous paper, Dwass (1967) proposed a method to deal with rank order statistics, which constitutes a unifying framework to derive various distributional results. In the present paper an alternative method is presented, which allows us to extend Dwass's results in several ways, namely arbitrary endpoints, horizontal steps and arbitrary probabilities for the three step types. Regarding these extensions the pertaining rank order statistics are extended as well to simple random walk statistics. This method has proved appropriate to generalize all results given by Dwass. Moreover, these discrete time results can be taken as a starting point to derive the corresponding results for randomized random walks by means of a limiting process.


1998 ◽  
Vol 7 (4) ◽  
pp. 397-401 ◽  
Author(s):  
OLLE HÄGGSTRÖM

We consider continuous time random walks on a product graph G×H, where G is arbitrary and H consists of two vertices x and y linked by an edge. For any t>0 and any a, b∈V(G), we show that the random walk starting at (a, x) is more likely to have hit (b, x) than (b, y) by time t. This contrasts with the discrete time case and proves a conjecture of Bollobás and Brightwell. We also generalize the result to cases where H is either a complete graph on n vertices or a cycle on n vertices.


1996 ◽  
Vol 33 (02) ◽  
pp. 311-330 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

In a famous paper, Dwass (1967) proposed a method to deal with rank order statistics, which constitutes a unifying framework to derive various distributional results. In the present paper an alternative method is presented, which allows us to extend Dwass's results in several ways, namely arbitrary endpoints, horizontal steps and arbitrary probabilities for the three step types. Regarding these extensions the pertaining rank order statistics are extended as well to simple random walk statistics. This method has proved appropriate to generalize all results given by Dwass. Moreover, these discrete time results can be taken as a starting point to derive the corresponding results for randomized random walks by means of a limiting process.


2004 ◽  
Vol 41 (03) ◽  
pp. 623-638 ◽  
Author(s):  
Mark M. Meerschaert ◽  
Hans-Peter Scheffler

A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.


2004 ◽  
Vol 41 (3) ◽  
pp. 623-638 ◽  
Author(s):  
Mark M. Meerschaert ◽  
Hans-Peter Scheffler

A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.


2014 ◽  
Vol 46 (02) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating functionGand a maximum principle which, we prove, is satisfied by every fixed point ofG. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2014 ◽  
Vol 46 (2) ◽  
pp. 400-421 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


Sign in / Sign up

Export Citation Format

Share Document