Surface active properties at the air–water interface of β-casein and its fragments derived by plasmin proteolysis

1989 ◽  
Vol 56 (3) ◽  
pp. 487-494 ◽  
Author(s):  
Michael Wilson ◽  
Daniel M. Mulvihill ◽  
William J. Donnelly ◽  
Brian P. Gill

Summaryβ-Casein, was enzymically modified by incubation with plasmin to yield γ-caseins and proteose peptones. Whole γ-, γ1-, γ2/γ3-caseins and whole proteose peptone (pp) were isolated from the hydrolysate mixture. The time dependence of surface tension at the air-water interface of solutions of β-casein and its plasmin derived fragments, at concentrations of 10−1 to 10−4% (w/v) protein, pH 7.0, was determined, at 25 °C, using a drop volume apparatus. The ranking of the proteins with respect to rate of reduction of surface tension, during the first rate determining step, at 10-2% (w/v) protein, was γ2/γ3 ≫ pp > whole γ- > γ1- > β-casein. The ranking of the proteins with respect to surface pressures attained after 40 min (π40) was concentration dependent. γ2/γ3-Caseins were found to be very surface active, decreasing surface tension rapidly and giving a high π40. γ1 Casein decreased surface activity somewhat faster than β-casein, but generally reached a lower π40. Whole γ-casein reflected the properties of both γ1 and γ2/γ3-caseins. Proteose peptone was found to decrease surface tension rapidly during the initial rate determining step; it gave a relatively high π40 at a bulk phase concentration of 10−3% (w/v) protein, but, it was the least surface active protein at 10−1 and 10−2% (w/v) protein.

1980 ◽  
Vol 185 (3) ◽  
pp. 715-722 ◽  
Author(s):  
Peter J. Quinn ◽  
Manouchehre A. Esfahani

Surface-active properties of ubiquinones and ubiquinols have been investigated by monomolecular-film techniques. Stable monolayers are formed at an air/water interface by the fully oxidized and reduced forms of the coenzyme; collapse pressures and hence stability of the films tend to increase with decreasing length of the isoprenoid side chain and films of the reduced coenzymes are more stable than those of their oxidized counterparts. Ubiquinone with a side chain of two isoprenoid units does not form stable monolayers at the air/water interface. Mixed monolayers of ubiquinol-10 or ubiquinone-10 with 1,2-dimyristoyl phosphatidylcholine, soya phosphatidylcholine and diphosphatidylglycerol do not exhibit ideal mixing characteristics. At surface pressures less than the collapse pressure of pure ubiquinone-10 monolayers (approx. 12mN·m−1) the isoprenoid chain is located substantially within the region occupied by the fatty acyl residues of the phospholipids. With increasing surface pressure the ubiquinones and their fully reduced equivalents are progressively squeezed out from between the phospholipid molecules until, at a pressure of about 35mN·m−1, the film has surface properties consistent with that of the pure phospholipid monolayer. This suggests that the ubiquinone(ol) forms a separate phase overlying the phospholipid monolayer. The implications of this energetically poised situation, where the quinone(ol) is just able to penetrate the phospholipid film, are considered in terms of the function of ubiquinone(ol) as electron and proton carriers of energy-transducing membranes.


1971 ◽  
Vol 26 (9) ◽  
pp. 922-929 ◽  
Author(s):  
Seymour Steven Brody

Ferredoxin (Fd) is surface active; both its area/molecule, A, and surface potential, ΔV, (at an air-water interface) vary with the pH of the subphase. From the surface isotherms (at pH 7.7) A and ΔV are 167 A2 and 170 ± 20 mV, respectively, when the surface tension is 10 dyne/cm.Fd and chlorophyll a (Chl) appear to form a mixed monomolecular film. At pH 7.7 a maximum interaction between Fd and Chl is observed when the monolayer contains a mole ratio of Fd/Chl ≅ 2. Irradiaion of Chl-Fd films, in nitrogen atmosphere, results in a bleaching of Chl and an increase of ΔV. The quantum yield for this bleaching is estimated to be 0.4.


Langmuir ◽  
2021 ◽  
Vol 37 (7) ◽  
pp. 2237-2255 ◽  
Author(s):  
Mengsu Peng ◽  
Timothy T. Duignan ◽  
Cuong V. Nguyen ◽  
Anh V. Nguyen

2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Dong Song ◽  
Baowei Song ◽  
Haibao Hu ◽  
Xiaosong Du ◽  
Peng Du ◽  
...  

Author(s):  
John Davenport

Post-larval specimens of Hirundichthys affinis are capable of jumping out of water, but the pectoral and pelvic fins are not extended when in air. Penetration through the air/ water interface demands a force to overcome surface tension which is similar in magnitude to the force required for the jump itself. However, post-larvae do not produce the single propulsive tail flick which powers the jump until most of the animal has passed through the interface. The post-larva emerges at an angle close to 45°, thus maximising the horizontal distance travelled before re-entry.Whether swimming slowly (4 body lengths s-1), or at maximum speed (36 body lengths s-1), post-larvae swim with the pectoral and pelvic fins extended. Calculations show that fast swimming post-larvae operate at Reynolds’ numbers of about 4×103, where surface roughness and projections decrease rather than increase drag.


Soft Matter ◽  
2020 ◽  
Vol 16 (15) ◽  
pp. 3695-3704 ◽  
Author(s):  
Xiuying Qiao ◽  
Reinhard Miller ◽  
Emanuel Schneck ◽  
Kang Sun

Silk fibroin (SF) adsorbs at the air/water interface, reduces the surface tension, and forms interfacial layers suppressing bubble coalescence and stabilizing foam.


Sign in / Sign up

Export Citation Format

Share Document